toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Olivier Penacchio; Xavier Otazu; Laura Dempere-Marco edit   pdf
doi  openurl
  Title A Neurodynamical Model of Brightness Induction in V1 Type Journal Article
  Year 2013 Publication PloS ONE Abbreviated Journal Plos  
  Volume 8 Issue 5 Pages (down) e64086  
  Keywords  
  Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ POD2013 Serial 2242  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Robert Benavente; Maria Vanrell; Ramon Baldrich edit  url
openurl 
  Title Psychophysical measurements to model inter-colour regions of colour-naming space Type Journal Article
  Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal  
  Volume 53 Issue 3 Pages (down) 031106 (8 pages)  
  Keywords image processing; Analysis  
  Abstract JCR Impact Factor 2009: 0.391
In this paper, we present a fuzzy-set of parametric functions which segment the CIE lab space into eleven regions which correspond to the group of common universal categories present in all evolved languages as identified by anthropologists and linguists. The set of functions is intended to model a color-name assignment task by humans and differs from other models in its emphasis on the inter-color boundary regions, which were explicitly measured by means of a psychophysics experiment. In our particular implementation, the CIE lab space was segmented into eleven color categories using a Triple Sigmoid as the fuzzy sets basis, whose parameters are included in this paper. The model’s parameters were adjusted according to the psychophysical results of a yes/no discrimination paradigm where observers had to choose (English) names for isoluminant colors belonging to regions in-between neighboring categories. These colors were presented on a calibrated CRT monitor (14-bit x 3 precision). The experimental results show that inter- color boundary regions are much less defined than expected and color samples other than those near the most representatives are needed to define the position and shape of boundaries between categories. The extended set of model parameters is given as a table.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ PBV2009 Serial 1157  
Permanent link to this record
 

 
Author Javier Vazquez; C. Alejandro Parraga; Maria Vanrell; Ramon Baldrich edit  doi
openurl 
  Title Color Constancy Algorithms: Psychophysical Evaluation on a New Dataset Type Journal Article
  Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal  
  Volume 53 Issue 3 Pages (down) 031105–9  
  Keywords  
  Abstract The estimation of the illuminant of a scene from a digital image has been the goal of a large amount of research in computer vision. Color constancy algorithms have dealt with this problem by defining different heuristics to select a unique solution from within the feasible set. The performance of these algorithms has shown that there is still a long way to go to globally solve this problem as a preliminary step in computer vision. In general, performance evaluation has been done by comparing the angular error between the estimated chromaticity and the chromaticity of a canonical illuminant, which is highly dependent on the image dataset. Recently, some workers have used high-level constraints to estimate illuminants; in this case selection is based on increasing the performance on the subsequent steps of the systems. In this paper we propose a new performance measure, the perceptual angular error. It evaluates the performance of a color constancy algorithm according to the perceptual preferences of humans, or naturalness (instead of the actual optimal solution) and is independent of the visual task. We show the results of a new psychophysical experiment comparing solutions from three different color constancy algorithms. Our results show that in more than a half of the judgments the preferred solution is not the one closest to the optimal solution. Our experiments were performed on a new dataset of images acquired with a calibrated camera with an attached neutral grey sphere, which better copes with the illuminant variations of the scene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number CAT @ cat @ VPV2009a Serial 1171  
Permanent link to this record
 

 
Author Domicele Jonauskaite; Lucia Camenzind; C. Alejandro Parraga; Cecile N Diouf; Mathieu Mercapide Ducommun; Lauriane Müller; Melanie Norberg; Christine Mohr edit  url
doi  openurl
  Title Colour-emotion associations in individuals with red-green colour blindness Type Journal Article
  Year 2021 Publication PeerJ Abbreviated Journal  
  Volume 9 Issue Pages (down) e11180  
  Keywords Affect; Chromotherapy; Colour cognition; Colour vision deficiency; Cross-modal correspondences; Daltonism; Deuteranopia; Dichromatic; Emotion; Protanopia.  
  Abstract Colours and emotions are associated in languages and traditions. Some of us may convey sadness by saying feeling blue or by wearing black clothes at funerals. The first example is a conceptual experience of colour and the second example is an immediate perceptual experience of colour. To investigate whether one or the other type of experience more strongly drives colour-emotion associations, we tested 64 congenitally red-green colour-blind men and 66 non-colour-blind men. All participants associated 12 colours, presented as terms or patches, with 20 emotion concepts, and rated intensities of the associated emotions. We found that colour-blind and non-colour-blind men associated similar emotions with colours, irrespective of whether colours were conveyed via terms (r = .82) or patches (r = .80). The colour-emotion associations and the emotion intensities were not modulated by participants' severity of colour blindness. Hinting at some additional, although minor, role of actual colour perception, the consistencies in associations for colour terms and patches were higher in non-colour-blind than colour-blind men. Together, these results suggest that colour-emotion associations in adults do not require immediate perceptual colour experiences, as conceptual experiences are sufficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC; LAMP; 600.120; 600.128 Approved no  
  Call Number Admin @ si @ JCP2021 Serial 3564  
Permanent link to this record
 

 
Author Jaykishan Patel; Alban Flachot; Javier Vazquez; David H. Brainard; Thomas S. A. Wallis; Marcus A. Brubaker; Richard F. Murray edit  url
openurl 
  Title A deep convolutional neural network trained to infer surface reflectance is deceived by mid-level lightness illusions Type Journal Article
  Year 2023 Publication Journal of Vision Abbreviated Journal JV  
  Volume 23 Issue 9 Pages (down) 4817-4817  
  Keywords  
  Abstract A long-standing view is that lightness illusions are by-products of strategies employed by the visual system to stabilize its perceptual representation of surface reflectance against changes in illumination. Computationally, one such strategy is to infer reflectance from the retinal image, and to base the lightness percept on this inference. CNNs trained to infer reflectance from images have proven successful at solving this problem under limited conditions. To evaluate whether these CNNs provide suitable starting points for computational models of human lightness perception, we tested a state-of-the-art CNN on several lightness illusions, and compared its behaviour to prior measurements of human performance. We trained a CNN (Yu & Smith, 2019) to infer reflectance from luminance images. The network had a 30-layer hourglass architecture with skip connections. We trained the network via supervised learning on 100K images, rendered in Blender, each showing randomly placed geometric objects (surfaces, cubes, tori, etc.), with random Lambertian reflectance patterns (solid, Voronoi, or low-pass noise), under randomized point+ambient lighting. The renderer also provided the ground-truth reflectance images required for training. After training, we applied the network to several visual illusions. These included the argyle, Koffka-Adelson, snake, White’s, checkerboard assimilation, and simultaneous contrast illusions, along with their controls where appropriate. The CNN correctly predicted larger illusions in the argyle, Koffka-Adelson, and snake images than in their controls. It also correctly predicted an assimilation effect in White's illusion. It did not, however, account for the checkerboard assimilation or simultaneous contrast effects. These results are consistent with the view that at least some lightness phenomena are by-products of a rational approach to inferring stable representations of physical properties from intrinsically ambiguous retinal images. Furthermore, they suggest that CNN models may be a promising starting point for new models of human lightness perception.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MACO; CIC Approved no  
  Call Number Admin @ si @ PFV2023 Serial 3890  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: