toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jaume Amores; N. Sebe; Petia Radeva edit  doi
openurl 
  Title (up) Boosting the distance estimation: Application to the K-Nearest Neighbor Classifier Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue 3 Pages 201–209  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ ASR2006 Serial 643  
Permanent link to this record
 

 
Author J. Pladellorens; M.J. Yzuel; J. Castell; Joan Serrat edit  openurl
  Title (up) Calculo automatico del volumen del ventriculo izquierdo. Comparacion con expertos. Type Journal
  Year 1993 Publication Optica Pura y Aplicada. Abbreviated Journal  
  Volume 26 Issue 3 Pages 685–691  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ PYC1993 Serial 149  
Permanent link to this record
 

 
Author Jose L. Gomez; Gabriel Villalonga; Antonio Lopez edit   pdf
url  openurl
  Title (up) Co-Training for Deep Object Detection: Comparing Single-Modal and Multi-Modal Approaches Type Journal Article
  Year 2021 Publication Sensors Abbreviated Journal SENS  
  Volume 21 Issue 9 Pages 3185  
  Keywords co-training; multi-modality; vision-based object detection; ADAS; self-driving  
  Abstract Top-performing computer vision models are powered by convolutional neural networks (CNNs). Training an accurate CNN highly depends on both the raw sensor data and their associated ground truth (GT). Collecting such GT is usually done through human labeling, which is time-consuming and does not scale as we wish. This data-labeling bottleneck may be intensified due to domain shifts among image sensors, which could force per-sensor data labeling. In this paper, we focus on the use of co-training, a semi-supervised learning (SSL) method, for obtaining self-labeled object bounding boxes (BBs), i.e., the GT to train deep object detectors. In particular, we assess the goodness of multi-modal co-training by relying on two different views of an image, namely, appearance (RGB) and estimated depth (D). Moreover, we compare appearance-based single-modal co-training with multi-modal. Our results suggest that in a standard SSL setting (no domain shift, a few human-labeled data) and under virtual-to-real domain shift (many virtual-world labeled data, no human-labeled data) multi-modal co-training outperforms single-modal. In the latter case, by performing GAN-based domain translation both co-training modalities are on par, at least when using an off-the-shelf depth estimation model not specifically trained on the translated images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ GVL2021 Serial 3562  
Permanent link to this record
 

 
Author Gabriel Villalonga; Antonio Lopez edit   pdf
doi  openurl
  Title (up) Co-Training for On-Board Deep Object Detection Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume Issue Pages 194441 - 194456  
  Keywords  
  Abstract Providing ground truth supervision to train visual models has been a bottleneck over the years, exacerbated by domain shifts which degenerate the performance of such models. This was the case when visual tasks relied on handcrafted features and shallow machine learning and, despite its unprecedented performance gains, the problem remains open within the deep learning paradigm due to its data-hungry nature. Best performing deep vision-based object detectors are trained in a supervised manner by relying on human-labeled bounding boxes which localize class instances (i.e. objects) within the training images. Thus, object detection is one of such tasks for which human labeling is a major bottleneck. In this article, we assess co-training as a semi-supervised learning method for self-labeling objects in unlabeled images, so reducing the human-labeling effort for developing deep object detectors. Our study pays special attention to a scenario involving domain shift; in particular, when we have automatically generated virtual-world images with object bounding boxes and we have real-world images which are unlabeled. Moreover, we are particularly interested in using co-training for deep object detection in the context of driver assistance systems and/or self-driving vehicles. Thus, using well-established datasets and protocols for object detection in these application contexts, we will show how co-training is a paradigm worth to pursue for alleviating object labeling, working both alone and together with task-agnostic domain adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ ViL2020 Serial 3488  
Permanent link to this record
 

 
Author Jose Luis Gomez; Gabriel Villalonga; Antonio Lopez edit  url
openurl 
  Title (up) Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models Type Journal Article
  Year 2023 Publication Sensors – Special Issue on “Machine Learning for Autonomous Driving Perception and Prediction” Abbreviated Journal SENS  
  Volume 23 Issue 2 Pages 621  
  Keywords Domain adaptation; semi-supervised learning; Semantic segmentation; Autonomous driving  
  Abstract Semantic image segmentation is a central and challenging task in autonomous driving, addressed by training deep models. Since this training draws to a curse of human-based image labeling, using synthetic images with automatically generated labels together with unlabeled real-world images is a promising alternative. This implies to address an unsupervised domain adaptation (UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of semantic
segmentation models. It consists of a self-training stage, which provides two domain-adapted models, and a model collaboration loop for the mutual improvement of these two models. These models are then used to provide the final semantic segmentation labels (pseudo-labels) for the real-world images. The overall
procedure treats the deep models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is required, nor explicit feature alignment. We test our proposal on standard synthetic and real-world datasets for on-board semantic segmentation. Our
procedure shows improvements ranging from ∼13 to ∼26 mIoU points over baselines, so establishing new state-of-the-art results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; no proj Approved no  
  Call Number Admin @ si @ GVL2023 Serial 3705  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: