toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Enric Marti; Antoni Gurgui; Debora Gil; Aura Hernandez-Sabate; Jaume Rocarias; Ferran Poveda edit   pdf
openurl 
  Title (down) ABP on line: Seguimiento, estregas y evaluación en aprendizaje basado en proyectos Type Miscellaneous
  Year 2014 Publication 8th International Congress on University Teaching and Innovation Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Tarragona; juliol 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIDUI  
  Notes IAM; ADAS; 600.076; 600.063; 600.075 Approved no  
  Call Number Admin @ si @ MGG2014 Serial 2457  
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil edit   pdf
url  openurl
  Title (down) A flexible outlier detector based on a topology given by graph communities Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Outlier, or anomaly, detection is essential for optimal performance of machine learning methods and statistical predictive models. It is not just a technical step in a data cleaning process but a key topic in many fields such as fraudulent document detection, in medical applications and assisted diagnosis systems or detecting security threats. In contrast to population-based methods, neighborhood based local approaches are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. However, a main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters. This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world data sets show that our approach overall outperforms, both, local and global strategies in multi and single view settings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.139; 600.145; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ RBG2020 Serial 3475  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: