toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Enric Marti; J. Rocarias; A. Sanchez; Petia Radeva; Ricardo Toledo; Jordi Vitria edit  openurl
  Title Caronte: un gestor documental para asignaturas del EEES Type Miscellaneous
  Year 2006 Publication (down) III Jornades de Innovacio Docent Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address UAB, Bellaterra  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;RV;OR;MILAB;ADAS;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ MRS2006b Serial 1124  
Permanent link to this record
 

 
Author Enric Marti; Debora Gil; Carme Julia edit   pdf
openurl 
  Title Una experiència en PBL per a la docència de Gràfics per Computador Type Miscellaneous
  Year 2005 Publication (down) II Jornades d’innovació Docent Abbreviated Journal  
  Volume Issue Pages  
  Keywords Aprenentatge Basat en Projectes; Aprenentatge Basat en Problemes; Problem Based Learning; ECTS; EEES; Computer Graphics; OpenGL.  
  Abstract En aquest article es presenta una experiència en ABP feta el curs 2004-05 en Gràfics per Computador 2, assignatura optativa de 3er curs d’Enginyeria Informàtica impartida a l’ETSE. En l’article s’explica l’organització docent abans d’ABP, basada en classes magistrals. Després es mostra l’organització en ABP i es quantifica en ECTS l’esforç de l’alumne en ambdues organitzacions. Essent conscient del diferent interès de l’alumnat per l’assignatura, se’ls hi ofereix dos itineraris: el de classes magistrals i d’ABP. Es mostren alguns resultats dels alumnes d’ABP i també les primeres enquestes realitzades als alumnes. S’exposen les conclusions en el primer any de l’experiència, plantejant temes de discussió. S’ha procurat que la proposta no desbordi l’esforç del professorat. Per això s’ofereix el doble itinerari, per a canalitzar per ABP els alumnes més interessats i permetre a la resta que realitzin el curs amb l’organització clàsica de l’assignatura: classes magistrals de teoria, problemes i pràctiques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGJ2005c Serial 1594  
Permanent link to this record
 

 
Author Elena Valderrama; Joan Oliver; Josep Maria-Basart; Enric Marti; Petia Radeva; Ricardo Toledo; R.Vilanova;F.Ced; J.Muñoz; S.Vacchina edit  openurl
  Title Convergencia al EEES de la ingeniería informática. Título de Grado en tecnología (Informática) Type Miscellaneous
  Year 2005 Publication (down) I Jornades de Innovació Docent Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Elena Valderrama  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;RV;MILAB;ADAS Approved no  
  Call Number IAM @ iam @ VOB2005 Serial 1652  
Permanent link to this record
 

 
Author Enric Marti; Jaume Rocarias; Debora Gil; Aura Hernandez-Sabate; Jaume Garcia; Carme Julia; Marc Vivet edit   pdf
openurl 
  Title Uso de recursos virtuales en Aprendizaje Basado en Proyectos. Una experiencia en la asignatura de Gráficos por Computador Type Miscellaneous
  Year 2009 Publication (down) I Congreso de Docencia Universitaria Abbreviated Journal  
  Volume Issue Pages  
  Keywords Aprendizaje Basado en Proyectos; Project Based Learning; Aprendizaje Cooperativo; Recursos Virtuales para el Aprendizaje Cooperativo; Moodle  
  Abstract Presentamos una experiencia en Aprendizaje Basado en Proyectos (ABP) realizada los últimos cuatro años en Gráficos por Computador 2, asignatura de Ingeniería Informática, de la Escuela Técnica Superior de Ingeniería (ETSE) de la Universidad Autónoma de Barcelona (UAB). Utilizamos un entorno Moodle adaptado por nosotros llamado Caronte para poder gestionar la documentación generada en ABP. Primero se presenta la asignatura, basada en dos itinerarios para cursarla: ABP y TPPE (Teoría, Problemas, Prácticas, Examen). El alumno debe escoger uno de ellos. Ambos itinerarios generan una cantidad importante de documentación (entregas de trabajos y prácticas, correcciones, ejercicios, etc.) a gestionar. En la comunicación presentamos los espacios electrónicos Moodle de ambos itinerarios. Finalmente, mostramos los resultados de encuestas realizadas a los alumnos para finalmente exponer las conclusiones de la experiencia en ABP y el uso de Moodle, así como plantear mejoras y temas de discusión.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vigo (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MRG2009a Serial 1602  
Permanent link to this record
 

 
Author Albert Andaluz; Francesc Carreras; Debora Gil; Jaume Garcia edit   pdf
url  openurl
  Title Una aplicació amigable pel càlcul de indicadors clínics del ventricle esquerre Type Miscellaneous
  Year 2010 Publication (down) Forum Biocat 2010 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Lonja de Mar,Barcelona (Spain)  
  Corporate Author CVC Thesis  
  Publisher Biocat Place of Publication Barcelona Editor  
  Language Catalan Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ ACG2010 Serial 1483  
Permanent link to this record
 

 
Author Enric Marti; Debora Gil; Carme Julia edit  isbn
openurl 
  Title Experiencia d aplicació de la metodología d aprenentatge per proyectes en assignatures d Enginyeria Informàtica per a una millor adaptació als crèdits ECTS i EEES Type Miscellaneous
  Year 2008 Publication (down) Experiències docents innovadores de la UAB en ciències experimentals i tecnologies i en ciències de la salud Abbreviated Journal  
  Volume 1 Issue Pages 57-68  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher UAB Place of Publication Editor IDES-UAB; M.Enric Martinez, E.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-490-2576-1 Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGJ2008 Serial 1592  
Permanent link to this record
 

 
Author Enric Marti; J. Rocarias; Petia Radeva; H. Tizon; Jordi Vitria edit  openurl
  Title Caronte. Un gestor documental para asignaturas de universidad en el EEES Type Miscellaneous
  Year 2007 Publication (down) Desarrollo de gestion de grupos, encuestas y autoevaluacion, MoodleMoot 2007 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;OR;MILAB;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ MRR2007b Serial 1128  
Permanent link to this record
 

 
Author Pau Cano; Alvaro Caravaca; Debora Gil; Eva Musulen edit   pdf
url  openurl
  Title Diagnosis of Helicobacter pylori using AutoEncoders for the Detection of Anomalous Staining Patterns in Immunohistochemistry Images Type Miscellaneous
  Year 2023 Publication (down) Arxiv Abbreviated Journal  
  Volume Issue Pages 107241  
  Keywords  
  Abstract This work addresses the detection of Helicobacter pylori a bacterium classified since 1994 as class 1 carcinogen to humans. By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest. This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples.
We propose to use autoencoders to learn latent patterns of healthy tissue and detect H. pylori as an anomaly in image staining. Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance. In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0.97 AUC in the detection of H. pylori.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ CCG2023 Serial 3855  
Permanent link to this record
 

 
Author Spyridon Bakas; Mauricio Reyes; Andras Jakab; Stefan Bauer; Markus Rempfler; Alessandro Crimi; Russell Takeshi Shinohara; Christoph Berger; Sung Min Ha; Martin Rozycki; Marcel Prastawa; Esther Alberts; Jana Lipkova; John Freymann; Justin Kirby; Michel Bilello; Hassan Fathallah-Shaykh; Roland Wiest; Jan Kirschke; Benedikt Wiestler; Rivka Colen; Aikaterini Kotrotsou; Pamela Lamontagne; Daniel Marcus; Mikhail Milchenko; Arash Nazeri; Marc-Andre Weber; Abhishek Mahajan; Ujjwal Baid; Dongjin Kwon; Manu Agarwal; Mahbubul Alam; Alberto Albiol; Antonio Albiol; Varghese Alex; Tuan Anh Tran; Tal Arbel; Aaron Avery; Subhashis Banerjee; Thomas Batchelder; Kayhan Batmanghelich; Enzo Battistella; Martin Bendszus; Eze Benson; Jose Bernal; George Biros; Mariano Cabezas; Siddhartha Chandra; Yi-Ju Chang; Joseph Chazalon; Shengcong Chen; Wei Chen; Jefferson Chen; Kun Cheng; Meinel Christoph; Roger Chylla; Albert Clérigues; Anthony Costa; Xiaomeng Cui; Zhenzhen Dai; Lutao Dai; Eric Deutsch; Changxing Ding; Chao Dong; Wojciech Dudzik; Theo Estienne; Hyung Eun Shin; Richard Everson; Jonathan Fabrizio; Longwei Fang; Xue Feng; Lucas Fidon; Naomi Fridman; Huan Fu; David Fuentes; David G Gering; Yaozong Gao; Evan Gates; Amir Gholami; Mingming Gong; Sandra Gonzalez-Villa; J Gregory Pauloski; Yuanfang Guan; Sheng Guo; Sudeep Gupta; Meenakshi H Thakur; Klaus H Maier-Hein; Woo-Sup Han; Huiguang He; Aura Hernandez-Sabate; Evelyn Herrmann; Naveen Himthani; Winston Hsu; Cheyu Hsu; Xiaojun Hu; Xiaobin Hu; Yan Hu; Yifan Hu; Rui Hua edit  openurl
  Title Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge Type Miscellaneous
  Year 2018 Publication (down) Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords BraTS; challenge; brain; tumor; segmentation; machine learning; glioma; glioblastoma; radiomics; survival; progression; RECIST  
  Abstract Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multiparametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in preoperative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118;MILAB;IAM Approved no  
  Call Number Admin @ si @ BRJ2018 Serial 3252  
Permanent link to this record
 

 
Author Debora Gil; Katerine Diaz; Carles Sanchez; Aura Hernandez-Sabate edit   pdf
url  openurl
  Title Early Screening of SARS-CoV-2 by Intelligent Analysis of X-Ray Images Type Miscellaneous
  Year 2020 Publication (down) Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Future SARS-CoV-2 virus outbreak COVID-XX might possibly occur during the next years. However the pathology in humans is so recent that many clinical aspects, like early detection of complications, side effects after recovery or early screening, are currently unknown. In spite of the number of cases of COVID-19, its rapid spread putting many sanitary systems in the edge of collapse has hindered proper collection and analysis of the data related to COVID-19 clinical aspects. We describe an interdisciplinary initiative that integrates clinical research, with image diagnostics and the use of new technologies such as artificial intelligence and radiomics with the aim of clarifying some of SARS-CoV-2 open questions. The whole initiative addresses 3 main points: 1) collection of standardize data including images, clinical data and analytics; 2) COVID-19 screening for its early diagnosis at primary care centers; 3) define radiomic signatures of COVID-19 evolution and associated pathologies for the early treatment of complications. In particular, in this paper we present a general overview of the project, the experimental design and first results of X-ray COVID-19 detection using a classic approach based on HoG and feature selection. Our experiments include a comparison to some recent methods for COVID-19 screening in X-Ray and an exploratory analysis of the feasibility of X-Ray COVID-19 screening. Results show that classic approaches can outperform deep-learning methods in this experimental setting, indicate the feasibility of early COVID-19 screening and that non-COVID infiltration is the group of patients most similar to COVID-19 in terms of radiological description of X-ray. Therefore, an efficient COVID-19 screening should be complemented with other clinical data to better discriminate these cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145; 601.337 Approved no  
  Call Number Admin @ si @ GDS2020 Serial 3474  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: