toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Pau Cano; Alvaro Caravaca; Debora Gil; Eva Musulen edit   pdf
url  openurl
  Title Diagnosis of Helicobacter pylori using AutoEncoders for the Detection of Anomalous Staining Patterns in Immunohistochemistry Images Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages 107241  
  Keywords  
  Abstract (down) This work addresses the detection of Helicobacter pylori a bacterium classified since 1994 as class 1 carcinogen to humans. By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest. This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples.
We propose to use autoencoders to learn latent patterns of healthy tissue and detect H. pylori as an anomaly in image staining. Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance. In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0.97 AUC in the detection of H. pylori.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ CCG2023 Serial 3855  
Permanent link to this record
 

 
Author Enric Marti; Jaume Rocarias; Debora Gil; Aura Hernandez-Sabate; Jaume Garcia; Carme Julia; Marc Vivet edit   pdf
openurl 
  Title Uso de recursos virtuales en Aprendizaje Basado en Proyectos. Una experiencia en la asignatura de Gráficos por Computador Type Miscellaneous
  Year 2009 Publication I Congreso de Docencia Universitaria Abbreviated Journal  
  Volume Issue Pages  
  Keywords Aprendizaje Basado en Proyectos; Project Based Learning; Aprendizaje Cooperativo; Recursos Virtuales para el Aprendizaje Cooperativo; Moodle  
  Abstract (down) Presentamos una experiencia en Aprendizaje Basado en Proyectos (ABP) realizada los últimos cuatro años en Gráficos por Computador 2, asignatura de Ingeniería Informática, de la Escuela Técnica Superior de Ingeniería (ETSE) de la Universidad Autónoma de Barcelona (UAB). Utilizamos un entorno Moodle adaptado por nosotros llamado Caronte para poder gestionar la documentación generada en ABP. Primero se presenta la asignatura, basada en dos itinerarios para cursarla: ABP y TPPE (Teoría, Problemas, Prácticas, Examen). El alumno debe escoger uno de ellos. Ambos itinerarios generan una cantidad importante de documentación (entregas de trabajos y prácticas, correcciones, ejercicios, etc.) a gestionar. En la comunicación presentamos los espacios electrónicos Moodle de ambos itinerarios. Finalmente, mostramos los resultados de encuestas realizadas a los alumnos para finalmente exponer las conclusiones de la experiencia en ABP y el uso de Moodle, así como plantear mejoras y temas de discusión.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vigo (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MRG2009a Serial 1602  
Permanent link to this record
 

 
Author Enric Marti; Ferran Poveda; Antoni Gurgui; Jaume Rocarias; Debora Gil edit   pdf
openurl 
  Title Una propuesta de seguimiento, tutorías on line y evaluación en la metodología de Aprendizaje Basado en Proyectos Type Miscellaneous
  Year 2013 Publication IV Congreso Internacional UNIVEST Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Poster  
  Address Girona  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference UNIVEST  
  Notes IAM Approved no  
  Call Number Admin @ si @ MPG2013a Serial 2304  
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil edit   pdf
url  openurl
  Title A flexible outlier detector based on a topology given by graph communities Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Outlier, or anomaly, detection is essential for optimal performance of machine learning methods and statistical predictive models. It is not just a technical step in a data cleaning process but a key topic in many fields such as fraudulent document detection, in medical applications and assisted diagnosis systems or detecting security threats. In contrast to population-based methods, neighborhood based local approaches are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. However, a main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters. This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world data sets show that our approach overall outperforms, both, local and global strategies in multi and single view settings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.139; 600.145; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ RBG2020 Serial 3475  
Permanent link to this record
 

 
Author Enric Marti; Ferran Poveda; Antoni Gurgui; Jaume Rocarias; Debora Gil; Aura Hernandez-Sabate edit   pdf
openurl 
  Title Una experiencia de estructura, funcionamiento y evaluación de la asignatura de graficos por computador con metodologia de aprendizaje basado en proyectos Type Miscellaneous
  Year 2013 Publication IV Congreso Internacional UNIVEST Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) IV Congreso Internacional UNIVEST  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference UNIVEST  
  Notes IAM; ADAS Approved no  
  Call Number Admin @ si @ MPG2013b Serial 2384  
Permanent link to this record
 

 
Author Enric Marti; Ferran Poveda; Antoni Gurgui; Debora Gil edit   pdf
url  isbn
openurl 
  Title Aprendizaje Basado en Proyectos en Ingeniería Informática. Resultados y reflexiones de seis años de experiencia Type Miscellaneous
  Year 2011 Publication Actas del Simposio-Taller JENUI 2011 Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract (down) In this workshop a 6 years experience in Project Based Learning (PBL) in Computer Graphics, Computer Engineering course at the Autonomous University of Barcelona (UAB) is presented. We use a Moodle environment suited to manage the documentation generated in PBL. The course is organized by means of two alternative routes: a classic itinerary of lectures and test-based evaluation and another with PBL. In the PBL itinerary we explain the organization in teamgroups, homework tutoring and monitoring and evaluation guidelines for students. We provide some of the work done by students, and the results of assessment surveys carried out to students during these years. We report the evolution of our PBL itinerary in terms of, both, organization and student surveys.
The workshop aims at discussing about on the advantages and disadvantages of using these active methodologies in technical degrees such as computer engineering, in order to debate about the most suitable way of organizing PBL and assessing students learning rate.
 
  Address Sevilla, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language spanish Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-694-5440-4 Medium  
  Area Expedition Conference JENUI  
  Notes IAM Approved no  
  Call Number IAM @ iam @ MPG2011 Serial 1584  
Permanent link to this record
 

 
Author Spyridon Bakas; Mauricio Reyes; Andras Jakab; Stefan Bauer; Markus Rempfler; Alessandro Crimi; Russell Takeshi Shinohara; Christoph Berger; Sung Min Ha; Martin Rozycki; Marcel Prastawa; Esther Alberts; Jana Lipkova; John Freymann; Justin Kirby; Michel Bilello; Hassan Fathallah-Shaykh; Roland Wiest; Jan Kirschke; Benedikt Wiestler; Rivka Colen; Aikaterini Kotrotsou; Pamela Lamontagne; Daniel Marcus; Mikhail Milchenko; Arash Nazeri; Marc-Andre Weber; Abhishek Mahajan; Ujjwal Baid; Dongjin Kwon; Manu Agarwal; Mahbubul Alam; Alberto Albiol; Antonio Albiol; Varghese Alex; Tuan Anh Tran; Tal Arbel; Aaron Avery; Subhashis Banerjee; Thomas Batchelder; Kayhan Batmanghelich; Enzo Battistella; Martin Bendszus; Eze Benson; Jose Bernal; George Biros; Mariano Cabezas; Siddhartha Chandra; Yi-Ju Chang; Joseph Chazalon; Shengcong Chen; Wei Chen; Jefferson Chen; Kun Cheng; Meinel Christoph; Roger Chylla; Albert Clérigues; Anthony Costa; Xiaomeng Cui; Zhenzhen Dai; Lutao Dai; Eric Deutsch; Changxing Ding; Chao Dong; Wojciech Dudzik; Theo Estienne; Hyung Eun Shin; Richard Everson; Jonathan Fabrizio; Longwei Fang; Xue Feng; Lucas Fidon; Naomi Fridman; Huan Fu; David Fuentes; David G Gering; Yaozong Gao; Evan Gates; Amir Gholami; Mingming Gong; Sandra Gonzalez-Villa; J Gregory Pauloski; Yuanfang Guan; Sheng Guo; Sudeep Gupta; Meenakshi H Thakur; Klaus H Maier-Hein; Woo-Sup Han; Huiguang He; Aura Hernandez-Sabate; Evelyn Herrmann; Naveen Himthani; Winston Hsu; Cheyu Hsu; Xiaojun Hu; Xiaobin Hu; Yan Hu; Yifan Hu; Rui Hua edit  openurl
  Title Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords BraTS; challenge; brain; tumor; segmentation; machine learning; glioma; glioblastoma; radiomics; survival; progression; RECIST  
  Abstract (down) Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multiparametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in preoperative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118;MILAB;IAM Approved no  
  Call Number Admin @ si @ BRJ2018 Serial 3252  
Permanent link to this record
 

 
Author Debora Gil; Katerine Diaz; Carles Sanchez; Aura Hernandez-Sabate edit   pdf
url  openurl
  Title Early Screening of SARS-CoV-2 by Intelligent Analysis of X-Ray Images Type Miscellaneous
  Year 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Future SARS-CoV-2 virus outbreak COVID-XX might possibly occur during the next years. However the pathology in humans is so recent that many clinical aspects, like early detection of complications, side effects after recovery or early screening, are currently unknown. In spite of the number of cases of COVID-19, its rapid spread putting many sanitary systems in the edge of collapse has hindered proper collection and analysis of the data related to COVID-19 clinical aspects. We describe an interdisciplinary initiative that integrates clinical research, with image diagnostics and the use of new technologies such as artificial intelligence and radiomics with the aim of clarifying some of SARS-CoV-2 open questions. The whole initiative addresses 3 main points: 1) collection of standardize data including images, clinical data and analytics; 2) COVID-19 screening for its early diagnosis at primary care centers; 3) define radiomic signatures of COVID-19 evolution and associated pathologies for the early treatment of complications. In particular, in this paper we present a general overview of the project, the experimental design and first results of X-ray COVID-19 detection using a classic approach based on HoG and feature selection. Our experiments include a comparison to some recent methods for COVID-19 screening in X-Ray and an exploratory analysis of the feasibility of X-Ray COVID-19 screening. Results show that classic approaches can outperform deep-learning methods in this experimental setting, indicate the feasibility of early COVID-19 screening and that non-COVID infiltration is the group of patients most similar to COVID-19 in terms of radiological description of X-ray. Therefore, an efficient COVID-19 screening should be complemented with other clinical data to better discriminate these cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145; 601.337 Approved no  
  Call Number Admin @ si @ GDS2020 Serial 3474  
Permanent link to this record
 

 
Author Enric Marti; Debora Gil; Marc Vivet ; Carme Julia edit   pdf
openurl 
  Title Balance de cuatro años de experiencia en la implantación de la metodología de Aprendizaje Basado en Proyectos en la asignatura de Gráficos por Computador en ingeniería Informática Type Miscellaneous
  Year 2008 Publication Actas V Jornadas Internacionales de Innovación Universitaria Abbreviated Journal  
  Volume Issue Pages  
  Keywords Aprendizaje cooperativo; aprendizaje basado en proyectos; experiencias docentes.  
  Abstract (down) En este trabajo se presentan los resultados de la aplicación de la metodología del aprendizaje cooperativo a la docencia de dos asignaturas de programación en ingeniería informática. ‘Algoritmos y programación’ y ‘Lenguajes de programación’ son dos asignaturas complementarias que se organizan entorno a un proyecto común que engloba los contenidos de ambas asignaturas. En la docencia de una parte muy importante de estas asignaturas, la metodología del aprendizaje cooperativo se ha adaptado a sus características específicas. Como muestra de esta adaptación presentamos dos ejemplos de las actividades desarrolladas dentro de la docencia de estas asignaturas. Después de tres años de aplicación, el análisis a nivel cualitativo y cuantitativo de los resultados muestra que éstos son muy satisfactorios y que la aplicación del método cooperativo ha mejorado de forma considerable el rendimiento de los alumnos en ambas asignaturas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ MGV2008a Serial 1598  
Permanent link to this record
 

 
Author Enric Marti; Jaume Rocarias; Ricardo Toledo; Aura Hernandez-Sabate edit   pdf
isbn  openurl
  Title Caronte: plataforma Moodle con gestion flexible de grupos. Primeras experiencias en asignaturas de Ingenieria Informatica Type Miscellaneous
  Year 2009 Publication 15th Jornadas de Enseñanza Universitaria de la Informatica Abbreviated Journal  
  Volume Issue Pages 461–468  
  Keywords  
  Abstract (down) En este artículo se presenta Caronte, entorno LMS (Learning Management System) basado en Moodle. Una característica importante del entorno es la gestión flexible de grupos en una asignatura. Entendemos por grupo un conjunto de alumnos que realizan un trabajo y uno de ellos entrega la actividad propuesta (práctica, encuesta, etc.) en representación del grupo. Hemos trabajado en la confección de estos grupos, implementando un sistema de inscripción por contraseña.
Caronte ofrece un conjunto de actividades basadas en este concepto de grupo: encuestas, tareas (entrega de trabajos o prácticas), encuestas de autoevaluación y cuestionarios, entre otras.
Basada en nuestra actividad de encuesta, hemos definido una actividad de Control, que permite un cierto feedback electrónico del profesor sobre la actividad de los alumnos.
Finalmente, se presenta un resumen de las experiencias de uso de Caronte sobre asignaturas de Ingeniería Informática en el curso 2007-08.
 
  Address Barcelona, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-692-2758-9 Medium  
  Area Expedition Conference JENUI  
  Notes IAM;RV;ADAS Approved no  
  Call Number IAM @ iam @ MRT2009 Serial 1202  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: