toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alberto Hidalgo; Ferran Poveda; Enric Marti;Debora Gil;Albert Andaluz; Francesc Carreras; Manuel Ballester edit   pdf
url  doi
openurl 
  Title Evidence of continuous helical structure of the cardiac ventricular anatomy assessed by diffusion tensor imaging magnetic resonance multiresolution tractography Type Journal Article
  Year 2012 Publication European Radiology Abbreviated Journal ECR  
  Volume 3 Issue 1 Pages 361-362  
  Keywords  
  Abstract Deep understanding of myocardial structure linking morphology and func- tion of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Diffusion tensor MRI provides a discrete measurement of the 3D arrangement of myocardial fibres by the observation of local anisotropic
diffusion of water molecules in biological tissues. In this work, we present a multi- scale visualisation technique based on DT-MRI streamlining capable of uncovering additional properties of the architectural organisation of the heart. Methods and Materials: We selected the John Hopkins University (JHU) Canine Heart Dataset, where the long axis cardiac plane is aligned with the scanner’s Z- axis. Their equipment included a 4-element passed array coil emitting a 1.5 T. For DTI acquisition, a 3D-FSE sequence is apply. We used 200 seeds for full-scale tractography, while we applied a MIP mapping technique for simplified tractographic reconstruction. In this case, we reduced each DTI 3D volume dimensions by order- two magnitude before streamlining.
Our simplified tractographic reconstruction method keeps the main geometric features of fibres, allowing for an easier identification of their global morphological disposition, including the ventricular basal ring. Moreover, we noticed a clearly visible helical disposition of the myocardial fibres, in line with the helical myocardial band ventricular structure described by Torrent-Guasp. Finally, our simplified visualisation with single tracts identifies the main segments of the helical ventricular architecture.
DT-MRI makes possible the identification of a continuous helical architecture of the myocardial fibres, which validates Torrent-Guasp’s helical myocardial band ventricular anatomical model.
 
  Address Viena, Austria  
  Corporate Author Thesis  
  Publisher (up) Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1869-4101 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ HPM2012 Serial 1858  
Permanent link to this record
 

 
Author Francesc Carreras; Jaume Garcia; Debora Gil; Sandra Pujadas; Chi ho Lion; R.Suarez-Arias; R.Leta; Xavier Alomar; Manuel Ballester; Guillem Pons-Llados edit  url
doi  openurl
  Title Left ventricular torsion and longitudinal shortening: two fundamental components of myocardial mechanics assessed by tagged cine-MRI in normal subjects Type Journal Article
  Year 2012 Publication International Journal of Cardiovascular Imaging Abbreviated Journal IJCI  
  Volume 28 Issue 2 Pages 273-284  
  Keywords Magnetic resonance imaging (MRI); Tagging MRI; Cardiac mechanics; Ventricular torsion  
  Abstract Cardiac magnetic resonance imaging (Cardiac MRI) has become a gold standard diagnostic technique for the assessment of cardiac mechanics, allowing the non-invasive calculation of left ventric- ular long axis longitudinal shortening (LVLS) and absolute myocardial torsion (AMT) between basal and apical left ventricular slices, a movement directly related to the helicoidal anatomic disposition of the myocardial fibers. The aim of this study is to determine AMT and LVLS behaviour and normal values from a group of healthy subjects. A group of 21 healthy volunteers (15 males) (age: 23–55 y.o., mean:30.7 ± 7.5) were prospectively included in an obser- vational study by Cardiac MRI. Left ventricular rotation (degrees) was calculated by custom-made software (Harmonic Phase Flow) in consecutive LV short axis planes tagged cine-MRI sequences. AMT was determined from the difference between basal and apical planes LV rotations. LVLS (%) was determined from the LV longitudinal and horizontal axis cine-MRI images. All the 21 cases studied were interpretable, although in three cases the value of the LV apical rotation could not be determined. The mean rotation of the basal and apical planes at end-systole were -3.71° ± 0.84° and 6.73° ± 1.69° (n:18) respectively, resulting in a LV mean AMT of 10.48° ± 1.63° (n:18). End-systolic mean LVLS was 19.07 ± 2.71%. Cardiac MRI allows for the calculation of AMT and LVLS, fundamental functional components of the ventricular twist mechanics conditioned, in turn, by the anatomical helical layout of the myocardial fibers. These values provide complementary information about systolic ventricular function in relation to the traditional parameters used in daily practice.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-5794 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ CGG2012 Serial 1496  
Permanent link to this record
 

 
Author Debora Gil; David Roche; Agnes Borras; Jesus Giraldo edit  doi
openurl 
  Title Terminating Evolutionary Algorithms at their Steady State Type Journal Article
  Year 2015 Publication Computational Optimization and Applications Abbreviated Journal COA  
  Volume 61 Issue 2 Pages 489-515  
  Keywords Evolutionary algorithms; Termination condition; Steady state; Differential evolution  
  Abstract Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-6003 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.044; 605.203; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ GRB2015 Serial 2560  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
doi  openurl
  Title Deformable Template Matching within a Bayesian Framework for Hand-Written Graphic Symbol Recognition Type Journal Article
  Year 2000 Publication Graphics Recognition Recent Advances Abbreviated Journal  
  Volume 1941 Issue Pages 193-208  
  Keywords  
  Abstract We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of information during line detection. It is defined as an energy minimization problem, using a Bayesian framework which allows to combine fidelity to ideal shape of the symbol and flexibility to modify the symbol in order to get the best fit to the binary input image. Prior to matching, we find the best global transformation of the symbol to start the recognition process, based on the distance between symbol lines and image lines. We have applied this method to the recognition of dimensions and symbols in architectural floor plans and we show its flexibility to recognize distorted symbols.  
  Address  
  Corporate Author Springer Verlag Thesis  
  Publisher (up) Springer Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ MVA2000 Serial 1655  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: