|
Records |
Links |
|
Author |
Esmitt Ramirez; Carles Sanchez; Debora Gil |


|
|
Title |
Localizing Pulmonary Lesions Using Fuzzy Deep Learning |
Type |
Conference Article |
|
Year |
2019 |
Publication |
21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
290-294 |
|
|
Keywords |
|
|
|
Abstract |
The usage of medical images is part of the clinical daily in several healthcare centers around the world. Particularly, Computer Tomography (CT) images are an important key in the early detection of suspicious lung lesions. The CT image exploration allows the detection of lung lesions before any invasive procedure (e.g. bronchoscopy, biopsy). The effective localization of lesions is performed using different image processing and computer vision techniques. Lately, the usage of deep learning models into medical imaging from detection to prediction shown that is a powerful tool for Computer-aided software. In this paper, we present an approach to localize pulmonary lung lesion using fuzzy deep learning. Our approach uses a simple convolutional neural network based using the LIDC-IDRI dataset. Each image is divided into patches associated a probability vector (fuzzy) according their belonging to anatomical structures on a CT. We showcase our approach as part of a full CAD system to exploration, planning, guiding and detection of pulmonary lesions. |
|
|
Address |
Timisoara; Rumania; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SYNASC |
|
|
Notes |
IAM; 600.145; 600.140; 601.337; 601.323 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RSG2019 |
Serial |
3531 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil |

|
|
Title |
Mental Workload Detection Based on EEG Analysis |
Type |
Conference Article |
|
Year |
2021 |
Publication |
Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. |
Abbreviated Journal |
|
|
|
Volume |
339 |
Issue |
|
Pages |
268-277 |
|
|
Keywords |
Cognitive states; Mental workload; EEG analysis; Neural Networks. |
|
|
Abstract |
The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation. |
|
|
Address |
Virtual; October 20-22 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CCIA |
|
|
Notes |
IAM; 600.139; 600.118; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3723 |
|
Permanent link to this record |