|
Records |
Links |
|
Author |
Debora Gil; David Roche; Agnes Borras; Jesus Giraldo |
|
|
Title |
Terminating Evolutionary Algorithms at their Steady State |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Computational Optimization and Applications |
Abbreviated Journal |
COA |
|
|
Volume |
61 |
Issue |
2 |
Pages |
489-515 |
|
|
Keywords |
Evolutionary algorithms; Termination condition; Steady state; Differential evolution |
|
|
Abstract |
Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0926-6003 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.044; 605.203; 600.060; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRB2015 |
Serial |
2560 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; F. Javier Sanchez; Gloria Fernandez Esparrach; Jorge Bernal |
|
|
Title |
3D Stable Spatio-temporal Polyp Localization in Colonoscopy Videos |
Type |
Book Chapter |
|
Year |
2015 |
Publication |
Computer-Assisted and Robotic Endoscopy. Revised selected papers of Second International Workshop, CARE 2015, Held in Conjunction with MICCAI 2015 |
Abbreviated Journal |
|
|
|
Volume |
9515 |
Issue |
|
Pages |
140-152 |
|
|
Keywords |
Colonoscopy, Polyp Detection, Polyp Localization, Region Extraction, Watersheds |
|
|
Abstract |
Computational intelligent systems could reduce polyp miss rate in colonoscopy for colon cancer diagnosis and, thus, increase the efficiency of the procedure. One of the main problems of existing polyp localization methods is a lack of spatio-temporal stability in their response. We propose to explore the response of a given polyp localization across temporal windows in order to select
those image regions presenting the highest stable spatio-temporal response.
Spatio-temporal stability is achieved by extracting 3D watershed regions on the
temporal window. Stability in localization response is statistically determined by analysis of the variance of the output of the localization method inside each 3D region. We have explored the benefits of considering spatio-temporal stability in two different tasks: polyp localization and polyp detection. Experimental results indicate an average improvement of 21:5% in polyp localization and 43:78% in polyp detection. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CARE |
|
|
Notes |
IAM; MV; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GSF2015 |
Serial |
2733 |
|
Permanent link to this record |
|
|
|
|
Author |
Enric Marti; J.Roncaries; Debora Gil; Aura Hernandez-Sabate; Antoni Gurgui; Ferran Poveda |
|
|
Title |
PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities |
Type |
Journal |
|
Year |
2015 |
Publication |
Journal of Technology and Science Education |
Abbreviated Journal |
JOTSE |
|
|
Volume |
5 |
Issue |
2 |
Pages |
87-96 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; ADAS; 600.076; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MRG2015 |
Serial |
2608 |
|
Permanent link to this record |
|
|
|
|
Author |
Gloria Fernandez Esparrach; Jorge Bernal; Cristina Rodriguez de Miguel; Debora Gil; Fernando Vilariño; Henry Cordova; Cristina Sanchez Montes; I.Araujo ; Maria Lopez Ceron; J.Llach; F. Javier Sanchez |
|
|
Title |
Colonic polyps are correctly identified by a computer vision method using wm-dova energy maps |
Type |
Conference Article |
|
Year |
2015 |
Publication |
Proceedings of 23 United European- UEG Week 2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
UEG |
|
|
Notes |
MV; IAM; 600.075;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @ FBR2015 |
Serial |
2732 |
|
Permanent link to this record |
|
|
|
|
Author |
Hanne Kause; Aura Hernandez-Sabate; Patricia Marquez; Andrea Fuster; Luc Florack; Hans van Assen; Debora Gil |
|
|
Title |
Confidence Measures for Assessing the HARP Algorithm in Tagged Magnetic Resonance Imaging |
Type |
Book Chapter |
|
Year |
2015 |
Publication |
Statistical Atlases and Computational Models of the Heart. Revised selected papers of Imaging and Modelling Challenges 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015 |
Abbreviated Journal |
|
|
|
Volume |
9534 |
Issue |
|
Pages |
69-79 |
|
|
Keywords |
|
|
|
Abstract |
Cardiac deformation and changes therein have been linked to pathologies. Both can be extracted in detail from tagged Magnetic Resonance Imaging (tMRI) using harmonic phase (HARP) images. Although point tracking algorithms have shown to have high accuracies on HARP images, these vary with position. Detecting and discarding areas with unreliable results is crucial for use in clinical support systems. This paper assesses the capability of two confidence measures (CMs), based on energy and image structure, for detecting locations with reduced accuracy in motion tracking results. These CMs were tested on a database of simulated tMRI images containing the most common artifacts that may affect tracking accuracy. CM performance is assessed based on its capability for HARP tracking error bounding and compared in terms of significant differences detected using a multi comparison analysis of variance that takes into account the most influential factors on HARP tracking performance. Results showed that the CM based on image structure was better suited to detect unreliable optical flow vectors. In addition, it was shown that CMs can be used to detect optical flow vectors with large errors in order to improve the optical flow obtained with the HARP tracking algorithm. |
|
|
Address |
Munich; Germany; January 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-28711-9 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
STACOM |
|
|
Notes |
ADAS; IAM; 600.075; 600.076; 600.060; 601.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KHM2015 |
Serial |
2734 |
|
Permanent link to this record |
|
|
|
|
Author |
Hanne Kause; Patricia Marquez; Andrea Fuster; Aura Hernandez-Sabate; Luc Florack; Debora Gil; Hans van Assen |
|
|
Title |
Quality Assessment of Optical Flow in Tagging MRI |
Type |
Conference Article |
|
Year |
2015 |
Publication |
5th Dutch Bio-Medical Engineering Conference BME2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
The Netherlands; January 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
BME |
|
|
Notes |
IAM; ADAS; 600.076; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KMF2015 |
Serial |
2616 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Debora Gil; Cristina Rodriguez de Miguel; Fernando Vilariño |
|
|
Title |
WM-DOVA Maps for Accurate Polyp Highlighting in Colonoscopy: Validation vs. Saliency Maps from Physicians |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Computerized Medical Imaging and Graphics |
Abbreviated Journal |
CMIG |
|
|
Volume |
43 |
Issue |
|
Pages |
99-111 |
|
|
Keywords |
Polyp localization; Energy Maps; Colonoscopy; Saliency; Valley detection |
|
|
Abstract |
We introduce in this paper a novel polyp localization method for colonoscopy videos. Our method is based on a model of appearance for polyps which defines polyp boundaries in terms of valley information. We propose the integration of valley information in a robust way fostering complete, concave and continuous boundaries typically associated to polyps. This integration is done by using a window of radial sectors which accumulate valley information to create WMDOVA1 energy maps related with the likelihood of polyp presence. We perform a double validation of our maps, which include the introduction of two new databases, including the first, up to our knowledge, fully annotated database with clinical metadata associated. First we assess that the highest value corresponds with the location of the polyp in the image. Second, we show that WM-DOVA energy maps can be comparable with saliency maps obtained from physicians' fixations obtained via an eye-tracker. Finally, we prove that our method outperforms state-of-the-art computational saliency results. Our method shows good performance, particularly for small polyps which are reported to be the main sources of polyp miss-rate, which indicates the potential applicability of our method in clinical practice. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0895-6111 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MV; IAM; 600.047; 600.060; 600.075;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @ BSF2015 |
Serial |
2609 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia Marquez |
|
|
Title |
A Confidence Framework for the Assessment of Optical Flow Performance |
Type |
Book Whole |
|
Year |
2015 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Optical Flow (OF) is the input of a wide range of decision support systems such as car driver assistance, UAV guiding or medical diagnose. In these real situations, the absence of ground truth forces to assess OF quality using quantities computed from either sequences or the computed optical flow itself. These quantities are generally known as Confidence Measures, CM. Even if we have a proper confidence measure we still need a way to evaluate its ability to discard pixels with an OF prone to have a large error. Current approaches only provide a descriptive evaluation of the CM performance but such approaches are not capable to fairly compare different confidence measures and optical flow algorithms. Thus, it is of prime importance to define a framework and a general road map for the evaluation of optical flow performance.
This thesis provides a framework able to decide which pairs “ optical flow – confidence measure” (OF-CM) are best suited for optical flow error bounding given a confidence level determined by a decision support system. To design this framework we cover the following points:
Descriptive scores. As a first step, we summarize and analyze the sources of inaccuracies in the output of optical flow algorithms. Second, we present several descriptive plots that visually assess CM capabilities for OF error bounding. In addition to the descriptive plots, given a plot representing OF-CM capabilities to bound the error, we provide a numeric score that categorizes the plot according to its decreasing profile, that is, a score assessing CM performance.
Statistical framework. We provide a comparison framework that assesses the best suited OF-CM pair for error bounding that uses a two stage cascade process. First of all we assess the predictive value of the confidence measures by means of a descriptive plot. Then, for a sample of descriptive plots computed over training frames, we obtain a generic curve that will be used for sequences with no ground truth. As a second step, we evaluate the obtained general curve and its capabilities to really reflect the predictive value of a confidence measure using the variability across train frames by means of ANOVA.
The presented framework has shown its potential in the application on clinical decision support systems. In particular, we have analyzed the impact of the different image artifacts such as noise and decay to the output of optical flow in a cardiac diagnose system and we have improved the navigation inside the bronchial tree on bronchoscopy. |
|
|
Address |
July 2015 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Debora Gil;Aura Hernandez |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-943427-2-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Mar2015 |
Serial |
2687 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera |
|
|
Title |
Anatomic Registration based on Medial Axis Parametrizations |
Type |
Book Whole |
|
Year |
2015 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of dierent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specic anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at specic locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the denition of a depth coordinate. However, given that dierent methods for generation of medial surfaces generate dierent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference. |
|
|
Address |
November 2015 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Debora Gil;Miguel Angel Gonzalez Ballester |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-943427-8-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Ver2015 |
Serial |
2708 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil |
|
|
Title |
A Novel Cochlear Reference Frame Based On The Laplace Equation |
Type |
Conference Article |
|
Year |
2015 |
Publication |
29th international Congress and Exhibition on Computer Assisted Radiology and Surgery |
Abbreviated Journal |
|
|
|
Volume |
10 |
Issue |
1 |
Pages |
1-312 |
|
|
Keywords |
|
|
|
Abstract |
Poster |
|
|
Address |
Barcelona; Spain; June 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CARS |
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ VGG2015 |
Serial |
2615 |
|
Permanent link to this record |