toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Oriol Rodriguez-Leon; Petia Radeva; Josepa Mauri edit   pdf
doi  openurl
  Title Myocardial Perfusion Characterization From Contrast Angiography Spectral Distribution Type Journal Article
  Year 2008 Publication IEEE Transactions on Medical Imaging Abbreviated Journal  
  Volume 27 Issue 5 Pages 641-649  
  Keywords Contrast angiography; myocardial perfusion; spectral analysis.  
  Abstract Despite recovering a normal coronary flow after acute myocardial infarction, percutaneous coronary intervention does not guarantee a proper perfusion (irrigation) of the infarcted area. This damage in microcirculation integrity may detrimentally affect the patient survival. Visual assessment of the myocardium opacification in contrast angiography serves to define a subjective score of the microcirculation integrity myocardial blush analysis (MBA). Although MBA correlates with patient prognosis its visual assessment is a very difficult task that requires of a highly expertise training in order to achieve a good intraobserver and interobserver agreement. In this paper, we provide objective descriptors of the myocardium staining pattern by analyzing the spectrum of the image local statistics. The descriptors proposed discriminate among the different phenomena observed in the angiographic sequence and allow defining an objective score of the myocardial perfusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRR2008 Serial 1541  
Permanent link to this record
 

 
Author F.Guirado; Ana Ripoll; C.Roig; Aura Hernandez-Sabate; Emilio Luque edit   pdf
openurl 
  Title Exploiting Throughput for Pipeline Execution in Streaming Image Processing Applications Type Book Chapter
  Year 2006 Publication Euro-Par 2006 Parallel Processing Abbreviated Journal LNCS  
  Volume 4128 Issue Pages 1095-1105  
  Keywords 12th International Euro–Par Conference  
  Abstract There is a large range of image processing applications that act on an input sequence of image frames that are continuously received. Throughput is a key performance measure to be optimized when execu- ting them. In this paper we propose a new task replication methodology for optimizing throughput for an image processing application in the field of medicine. The results show that by applying the proposed methodo- logy we are able to achieve the desired throughput in all cases, in such a way that the input frames can be processed at any given rate.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Dresden, Germany (European Union) Editor UAB; W, E.N.; et al.  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Lecture Notes In Computer Science Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Euro–Par  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GRR2006a Serial 1542  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate edit   pdf
isbn  openurl
  Title Exploring Arterial Dynamics and Structures in IntraVascular Ultrasound Sequences Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular diseases are a leading cause of death in developed countries. Most of them are caused by arterial (specially coronary) diseases, mainly caused by plaque accumulation. Such pathology narrows blood flow (stenosis) and affects artery bio- mechanical elastic properties (atherosclerosis). In the last decades, IntraVascular UltraSound (IVUS) has become a usual imaging technique for the diagnosis and follow up of arterial diseases. IVUS is a catheter-based imaging technique which shows a sequence of cross sections of the artery under study. Inspection of a single image gives information about the percentage of stenosis. Meanwhile, inspection of longitudinal views provides information about artery bio-mechanical properties, which can prevent a fatal outcome of the cardiovascular disease. On one hand, dynamics of arteries (due to heart pumping among others) is a major artifact for exploring tissue bio-mechanical properties. On the other one, manual stenosis measurements require a manual tracing of vessel borders, which is a time-consuming task and might suffer from inter-observer variations. This PhD thesis proposes several image processing tools for exploring vessel dy- namics and structures. We present a physics-based model to extract, analyze and correct vessel in-plane rigid dynamics and to retrieve cardiac phase. Furthermore, we introduce a deterministic-statistical method for automatic vessel borders detection. In particular, we address adventitia layer segmentation. An accurate validation pro- tocol to ensure reliable clinical applicability of the methods is a crucial step in any proposal of an algorithm. In this thesis we take special care in designing a valida- tion protocol for each approach proposed and we contribute to the in vivo dynamics validation with a quantitative and objective score to measure the amount of motion suppressed.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-6-4 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Her2009 Serial 1543  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate edit   pdf
openurl 
  Title Automatic adventitia segmentation in IntraVascular UltraSound images Type Report
  Year 2005 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 85 Pages  
  Keywords  
  Abstract A usual tool in cardiac disease diagnosis is vessel plaque assessment by analysis of IVUS sequences. Manual detection of lumen-intima, intima-media and media-adventitia vessel borders is the main activity of physicians in the process of plaque quantification. Large variety in vessel border descriptors, as well as, shades, artifacts and blurred response due to ultrasound physical properties troubles automated media-adventitia segmentation. This experimental work presents a solution to such a complex problem. The process blends advanced anisotropic filtering operators and statistic classification techniques, achieving an efficient vessel border modelling strategy. First of all, we introduce the theoretic base of the method. After that, we show the steps of the algorithm, validating the method with statistics that show that the media-adventitia border detection achieves an accuracy in the range of inter-observer variability regardless of plaque nature, vessel geometry and incomplete vessel borders. Finally, we present a little Matlab application to the automatic media-adventitia border.  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication 08193 Bellaterra, Barcelona (Spain) Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Her2005 Serial 1544  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title Approaching Artery Rigid Dynamics in IVUS Type Journal Article
  Year 2009 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 28 Issue 11 Pages 1670-1680  
  Keywords Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation.  
  Abstract Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGF2009 Serial 1545  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti edit   pdf
doi  openurl
  Title Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences Type Journal Article
  Year 2011 Publication IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Abbreviated Journal T-UFFC  
  Volume 58 Issue 1 Pages 60-72  
  Keywords 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging  
  Abstract Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-3010 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ HGG2011 Serial 1546  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Petia Radeva edit   pdf
openurl 
  Title A Deterministic-Statistical Strategy for Adventitia Segmentation in IVUS images Type Report
  Year 2005 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 89 Pages  
  Keywords  
  Abstract A useful tool for some specific studies in cardiac disease diagnosis is vessel plaque assessment by analysis of IVUS sequences. Manual detection of luminal (inner) and media-adventitia (external) vessel borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as well as, shades, artifacts and blurred signal response due to ultrasound physical properties troubles automated adventitia segmentation. In order to efficiently approach such a complex problem, we propose blending advanced anisotropic filtering operators and statistical classification techniques into a vessel border modelling strategy. Our systematic statistical analysis shows that the reported adventitia detection achieves an accuracy in the range of inter-observer variability regardless of plaque nature, vessel geometry and incomplete vessel borders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGR2005a Serial 1548  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Petia Radeva edit   pdf
openurl 
  Title On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging Type Conference Article
  Year 2005 Publication Proceeding of the 2005 conference on Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue Pages 67-74  
  Keywords classification; vessel border modelling; IVUS  
  Abstract IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Amsterdam, The Netherlands Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ HGR2005c Serial 1549  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Albert Teis edit   pdf
doi  openurl
  Title How Do Conservation Laws Define a Motion Suppression Score in In-Vivo Ivus Sequences? Type Conference Article
  Year 2007 Publication Proc. IEEE Ultrasonics Symp Abbreviated Journal  
  Volume Issue Pages 2231-2234  
  Keywords validation standards; IVUS motion compensation; conservation laws.  
  Abstract Evaluation of arterial tissue biomechanics for diagnosis and treatment of cardiovascular diseases is an active research field in the biomedical imaging processing area. IntraVascular UltraSound (IVUS) is a unique tool for such assessment since it reflects tissue morphology and deformation. A proper quantification and visualization of both properties is hindered by vessel structures misalignments introduced by cardiac dynamics. This has encouraged development of IVUS motion compensation techniques. However, there is a lack of an objective evaluation of motion reduction ensuring a reliable clinical application This work reports a novel score, the Conservation of Density Rate (CDR), for validation of motion compensation in in-vivo pullbacks. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; while results in in vivo pullbacks show its reliability in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ HTG2007 Serial 1550  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Monica Mitiko; Sergio Shiguemi; Debora Gil edit   pdf
url  isbn
openurl 
  Title A validation protocol for assessing cardiac phase retrieval in IntraVascular UltraSound Type Conference Article
  Year 2010 Publication Computing in Cardiology Abbreviated Journal  
  Volume 37 Issue Pages 899-902  
  Keywords  
  Abstract A good reliable approach to cardiac triggering is of utmost importance in obtaining accurate quantitative results of atherosclerotic plaque burden from the analysis of IntraVascular UltraSound. Although, in the last years, there has been an increase in research of methods for retrospective gating, there is no general consensus in a validation protocol. Many methods are based on quality assessment of longitudinal cuts appearance and those reporting quantitative numbers do not follow a standard protocol. Such heterogeneity in validation protocols makes faithful comparison across methods a difficult task. We propose a validation protocol based on the variability of the retrieved cardiac phase and explore the capability of several quality measures for quantifying such variability. An ideal detector, suitable for its application in clinical practice, should produce stable phases. That is, it should always sample the same cardiac cycle fraction. In this context, one should measure the variability (variance) of a candidate sampling with respect a ground truth (reference) sampling, since the variance would indicate how spread we are aiming a target. In order to quantify the deviation between the sampling and the ground truth, we have considered two quality scores reported in the literature: signed distance to the closest reference sample and distance to the right of each reference sample. We have also considered the residuals of the regression line of reference against candidate sampling. The performance of the measures has been explored on a set of synthetic samplings covering different cardiac cycle fractions and variabilities. From our simulations, we conclude that the metrics related to distances are sensitive to the shift considered while the residuals are robust against fraction and variabilities as far as one can establish a pair-wise correspondence between candidate and reference. We will further investigate the impact of false positive and negative detections in experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0276-6547 ISBN 978-1-4244-7318-2 Medium  
  Area Expedition Conference CINC  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ HSM2010 Serial 1551  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: