toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Agnes Borras; Manuel Ballester; Francesc Carreras; Ruth Aris; Manuel Vazquez; Enric Marti; Ferran Poveda edit   pdf
url  doi
isbn  openurl
  Title MIOCARDIA: Integrating cardiac function and muscular architecture for a better diagnosis Type Conference Article
  Year 2011 Publication 14th International Symposium on Applied Sciences in Biomedical and Communication Technologies Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep understanding of myocardial structure of the heart would unravel crucial knowledge for clinical and medical procedures. The MIOCARDIA project is a multidisciplinary project in cooperation with l'Hospital de la Santa Creu i de Sant Pau, Clinica la Creu Blanca and Barcelona Supercomputing Center. The ultimate goal of this project is defining a computational model of the myocardium. The model takes into account the deep interrelation between the anatomy and the mechanics of the heart. The paper explains the workflow of the MIOCARDIA project. It also introduces a multiresolution reconstruction technique based on DT-MRI streamlining for simplified global myocardial model generation. Our reconstructions can restore the most complex myocardial structures and provides evidences of a global helical organization.  
  Address Barcelona; Spain  
  Corporate Author Association for Computing Machinery Thesis  
  Publisher Place of Publication Barcelona, Spain Editor Association for Computing Machinery  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-1-4503-0913-4 Medium  
  Area Expedition Conference ISABEL  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGB2011 Serial 1691  
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit   pdf
doi  isbn
openurl 
  Title A medial map capturing the essential geometry of organs Type Conference Article
  Year 2012 Publication ISBI Workshop on Open Source Medical Image Analysis software Abbreviated Journal  
  Volume Issue Pages 1691 - 1694  
  Keywords Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume  
  Address Barcelona,Spain  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1945-7928 ISBN (up) 978-1-4577-1857-1 Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number IAM @ iam @ VGG2012a Serial 1989  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
doi  isbn
openurl 
  Title Detecting loss of diversity for an efficient termination of EAs Type Conference Article
  Year 2013 Publication 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Abbreviated Journal  
  Volume Issue Pages 561 - 566  
  Keywords EA termination; EA population diversity; EA steady state  
  Abstract Termination of Evolutionary Algorithms (EA) at its steady state so that useless iterations are not performed is a main point for its efficient application to black-box problems. Many EA algorithms evolve while there is still diversity in their population and, thus, they could be terminated by analyzing the behavior some measures of EA population diversity. This paper presents a numeric approximation to steady states that can be used to detect the moment EA population has lost its diversity for EA termination. Our condition has been applied to 3 EA paradigms based on diversity and a selection of functions
covering the properties most relevant for EA convergence.
Experiments show that our condition works regardless of the search space dimension and function landscape.
 
  Address Timisoara; Rumania;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-1-4799-3035-7 Medium  
  Area Expedition Conference SYNASC  
  Notes IAM; 600.044; 600.060; 605.203 Approved no  
  Call Number Admin @ si @ RGG2013c Serial 2299  
Permanent link to this record
 

 
Author Fernando Vilariño; Debora Gil; Petia Radeva edit   pdf
url  isbn
openurl 
  Title A Novel FLDA Formulation for Numerical Stability Analysis Type Book Chapter
  Year 2004 Publication Recent Advances in Artificial Intelligence Research and Development Abbreviated Journal  
  Volume 113 Issue Pages 77-84  
  Keywords Supervised Learning; Linear Discriminant Analysis; Numerical Stability; Computer Vision  
  Abstract Fisher Linear Discriminant Analysis (FLDA) is one of the most popular techniques used in classification applying dimensional reduction. The numerical scheme involves the inversion of the within-class scatter matrix, which makes FLDA potentially ill-conditioned when it becomes singular. In this paper we present a novel explicit formulation of FLDA in terms of the eccentricity ratio and eigenvector orientations of the within-class scatter matrix. An analysis of this function will characterize those situations where FLDA response is not reliable because of numerical instability. This can solve common situations of poor classification performance in computer vision.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor J. Vitrià, P. Radeva and I. Aguiló  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-1-58603-466-5 Medium  
  Area Expedition Conference  
  Notes MV;IAM;MILAB Approved no  
  Call Number IAM @ iam @ VGR2004 Serial 1663  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
url  isbn
openurl 
  Title An inference model for analyzing termination conditions of Evolutionary Algorithms Type Conference Article
  Year 2011 Publication 14th Congrès Català en Intel·ligencia Artificial Abbreviated Journal  
  Volume Issue Pages 216-225  
  Keywords Evolutionary Computation Convergence, Termination Conditions, Statistical Inference  
  Abstract In real-world problems, it is mandatory to design a termination condition for Evolutionary Algorithms (EAs) ensuring stabilization close to the unknown optimum. Distribution-based quantities are good candidates as far as suitable parameters are used. A main limitation for application to real-world problems is that such parameters strongly depend on the topology of the objective function, as well as, the EA paradigm used.
We claim that the termination problem would be fully solved if we had a model measuring to what extent a distribution-based quantity asymptotically behaves like the solution accuracy. We present a regression-prediction model that relates any two given quantities and reports if they can be statistically swapped as termination conditions. Our framework is applied to two issues. First, exploring if the parameters involved in the computation of distribution-based quantities influence their asymptotic behavior. Second, to what extent existing distribution-based quantities can be asymptotically exchanged for the accuracy of the EA solution.
 
  Address Lleida, Catalonia (Spain)  
  Corporate Author Associació Catalana Intel·ligència Artificial Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-1-60750-841-0 Medium  
  Area Expedition Conference CCIA  
  Notes IAM Approved no  
  Call Number IAM @ iam @ RGG2011a Serial 1677  
Permanent link to this record
 

 
Author Carles Sanchez; Jorge Bernal; Debora Gil; F. Javier Sanchez edit   pdf
doi  isbn
openurl 
  Title On-line lumen centre detection in gastrointestinal and respiratory endoscopy Type Conference Article
  Year 2013 Publication Second International Workshop Clinical Image-Based Procedures Abbreviated Journal  
  Volume 8361 Issue Pages 31-38  
  Keywords Lumen centre detection; Bronchoscopy; Colonoscopy  
  Abstract We present in this paper a novel lumen centre detection for gastrointestinal and respiratory endoscopic images. The proposed method is based on the appearance and geometry of the lumen, which we defined as the darkest image region which centre is a hub of image gradients. Experimental results validated on the first public annotated gastro-respiratory database prove the reliability of the method for a wide range of images (with precision over 95 %).  
  Address Nagoya; Japan; September 2013  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor Erdt, Marius and Linguraru, Marius George and Oyarzun Laura, Cristina and Shekhar, Raj and Wesarg, Stefan and González Ballester, Miguel Angel and Drechsler, Klaus  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-3-319-05665-4 Medium  
  Area 800 Expedition Conference CLIP  
  Notes MV; IAM; 600.047; 600.044; 600.060 Approved no  
  Call Number Admin @ si @ SBG2013 Serial 2302  
Permanent link to this record
 

 
Author Francesco Brughi; Debora Gil; Llorenç Badiella; Eva Jove Casabella; Oriol Ramos Terrades edit   pdf
doi  isbn
openurl 
  Title Exploring the impact of inter-query variability on the performance of retrieval systems Type Conference Article
  Year 2014 Publication 11th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 8814 Issue Pages 413–420  
  Keywords  
  Abstract This paper introduces a framework for evaluating the performance of information retrieval systems. Current evaluation metrics provide an average score that does not consider performance variability across the query set. In this manner, conclusions lack of any statistical significance, yielding poor inference to cases outside the query set and possibly unfair comparisons. We propose to apply statistical methods in order to obtain a more informative measure for problems in which different query classes can be identified. In this context, we assess the performance variability on two levels: overall variability across the whole query set and specific query class-related variability. To this end, we estimate confidence bands for precision-recall curves, and we apply ANOVA in order to assess the significance of the performance across different query classes.  
  Address Algarve; Portugal; October 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (up) 978-3-319-11757-7 Medium  
  Area Expedition Conference ICIAR  
  Notes IAM; DAG; 600.060; 600.061; 600.077; 600.075 Approved no  
  Call Number Admin @ si @ BGB2014 Serial 2559  
Permanent link to this record
 

 
Author Jorge Bernal; Debora Gil; Carles Sanchez; F. Javier Sanchez edit   pdf
doi  isbn
openurl 
  Title Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis Type Conference Article
  Year 2014 Publication 1st MICCAI Workshop on Computer-Assisted and Robotic Endoscopy Abbreviated Journal  
  Volume 8899 Issue Pages 1-10  
  Keywords Image Segmentation; Polyps, Colonoscopy; Valley Information; Energy Maps  
  Abstract In this paper we present a novel polyp region segmentation method for colonoscopy videos. Our method uses valley information associated to polyp boundaries in order to provide an initial segmentation. This first segmentation is refined to eliminate boundary discontinuities caused by image artifacts or other elements of the scene. Experimental results over a publicly annotated database show that our method outperforms both general and specific segmentation methods by providing more accurate regions rich in polyp content. We also prove how image preprocessing is needed to improve final polyp region segmentation.  
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (up) 978-3-319-13409-3 Medium  
  Area Expedition Conference CARE  
  Notes MV; IAM; 600.044; 600.047; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ BGS2014b Serial 2503  
Permanent link to this record
 

 
Author Patricia Marquez; H. Kause; A. Fuster; Aura Hernandez-Sabate; L. Florack; Debora Gil; Hans van Assen edit   pdf
doi  isbn
openurl 
  Title Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging Type Conference Article
  Year 2014 Publication 17th International Conference on Medical Image Computing and Computer Assisted Intervention Abbreviated Journal  
  Volume 8896 Issue Pages 231-238  
  Keywords Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging  
  Abstract Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across di erent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three di erent OF methods, including HARP.
 
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (up) 978-3-319-14677-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM; ADAS; 600.060; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MKF2014 Serial 2495  
Permanent link to this record
 

 
Author Hanne Kause; Aura Hernandez-Sabate; Patricia Marquez; Andrea Fuster; Luc Florack; Hans van Assen; Debora Gil edit   pdf
doi  isbn
openurl 
  Title Confidence Measures for Assessing the HARP Algorithm in Tagged Magnetic Resonance Imaging Type Book Chapter
  Year 2015 Publication Statistical Atlases and Computational Models of the Heart. Revised selected papers of Imaging and Modelling Challenges 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015 Abbreviated Journal  
  Volume 9534 Issue Pages 69-79  
  Keywords  
  Abstract Cardiac deformation and changes therein have been linked to pathologies. Both can be extracted in detail from tagged Magnetic Resonance Imaging (tMRI) using harmonic phase (HARP) images. Although point tracking algorithms have shown to have high accuracies on HARP images, these vary with position. Detecting and discarding areas with unreliable results is crucial for use in clinical support systems. This paper assesses the capability of two confidence measures (CMs), based on energy and image structure, for detecting locations with reduced accuracy in motion tracking results. These CMs were tested on a database of simulated tMRI images containing the most common artifacts that may affect tracking accuracy. CM performance is assessed based on its capability for HARP tracking error bounding and compared in terms of significant differences detected using a multi comparison analysis of variance that takes into account the most influential factors on HARP tracking performance. Results showed that the CM based on image structure was better suited to detect unreliable optical flow vectors. In addition, it was shown that CMs can be used to detect optical flow vectors with large errors in order to improve the optical flow obtained with the HARP tracking algorithm.  
  Address Munich; Germany; January 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (up) 978-3-319-28711-9 Medium  
  Area Expedition Conference STACOM  
  Notes ADAS; IAM; 600.075; 600.076; 600.060; 601.145 Approved no  
  Call Number Admin @ si @ KHM2015 Serial 2734  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: