toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil edit  url
openurl 
  Title EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results Type Journal Article
  Year 2022 Publication Journal of Thoracic Oncology Abbreviated Journal JTO  
  Volume 17 Issue 9 Pages S182  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ RBG2022b Serial 3834  
Permanent link to this record
 

 
Author (up) Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil edit  openurl
  Title Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results. Type Journal Article
  Year 2022 Publication European Respiratory Journal Abbreviated Journal ERJ  
  Volume 60 Issue 66 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ RBG2022c Serial 3835  
Permanent link to this record
 

 
Author (up) Antonio Esteban Lansaque edit  openurl
  Title 3D reconstruction and recognition using structured ligth Type Report
  Year 2014 Publication CVC Technical Report Abbreviated Journal  
  Volume 179 Issue Pages  
  Keywords  
  Abstract This work covers the problem of 3D reconstruction, recognition and 6DOF pose estimation. The goal of this project is to reconstruct a 3D scene and to align an object model of the industrial pieces onto the reconstructed scene. The reconstruction algorithm is based on stereo techniques and the recognition algorithm is based on SHOT descriptors computed on a set of uniform keypoints. Correspondences are used to estimate a first 6DOF transformation that maps the model onto the scene and then ICP algorithm is used to refine the transformation. In order to check the effectiveness of the proposed algorithm, several experiments were performed. These experiments were conducted on a lab environment in order to get results under the same conditions in all of them. Although obtained results are not real time results, the proposed algorithm ends up with high rates of object recognition.  
  Address UAB; September 2014  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Est2014 Serial 2578  
Permanent link to this record
 

 
Author (up) Antonio Esteban Lansaque edit  isbn
openurl 
  Title An Endoscopic Navigation System for Lung Cancer Biopsy Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Lung cancer is one of the most diagnosed cancers among men and women. Actually,
lung cancer accounts for 13% of the total cases with a 5-year global survival
rate in patients. Although Early detection increases survival rate from 38% to 67%, accurate diagnosis remains a challenge. Pathological confirmation requires extracting a sample of the lesion tissue for its biopsy. The preferred procedure for tissue biopsy is called bronchoscopy. A bronchoscopy is an endoscopic technique for the internal exploration of airways which facilitates the performance of minimal invasive interventions with low risk for the patient. Recent advances in bronchoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures, like lung cancer biopsy sampling. Despite the improvement in bronchoscopic device quality, there is a lack of intelligent computational systems for supporting in-vivo clinical decision during examinations. Existing technologies fail to accurately reach the lesion due to several aspects at intervention off-line planning and poor intra-operative guidance at exploration time. Existing guiding systems radiate patients and clinical staff,might be expensive and achieve a suboptimlal 70% of yield boost. Diagnostic yield could be improved reducing radiation and costs by developing intra-operative support systems able to guide the bronchoscopist to the lesion during the intervention. The goal of this PhD thesis is to develop an image-based navigation systemfor intra-operative guidance of bronchoscopists to a target lesion across a path previously planned on a CT-scan. We propose a 3D navigation system which uses the anatomy of video bronchoscopy frames to locate the bronchoscope within the airways. Once the bronchoscope is located, our navigation system is able to indicate the bifurcation which needs to be followed to reach the lesion. In order to facilitate an off-line validation
as realistic as possible, we also present a method for augmenting simulated virtual bronchoscopies with the appearance of intra-operative videos. Experiments performed on augmented and intra-operative videos, prove that our algorithm can be speeded up for an on-line implementation in the operating room.
 
  Address October 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Carles Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-0-2 Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ Est2019 Serial 3392  
Permanent link to this record
 

 
Author (up) Antonio Esteban Lansaque; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
openurl 
  Title Stable Airway Center Tracking for Bronchoscopic Navigation Type Conference Article
  Year 2016 Publication 28th Conference of the international Society for Medical Innovation and Technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Bronchoscopists use X‐ray fluoroscopy to guide bronchoscopes to the lesion to be biopsied without any kind of incisions. Reducing exposure to X‐ray is important for both patients and doctors but alternatives like electromagnetic navigation require specific equipment and increase the cost of the clinical procedure. We propose a guiding system based on the extraction of airway centers from intra‐operative videos. Such anatomical landmarks could be
matched to the airway centerline extracted from a pre‐planned CT to indicate the best path to the lesion. We present an extraction of lumen centers
from intra‐operative videos based on tracking of maximal stable regions of energy maps.
 
  Address Delft; Rotterdam; Leiden; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SMIT  
  Notes IAM; Approved no  
  Call Number Admin @ si @ LSB2016a Serial 2856  
Permanent link to this record
 

 
Author (up) Antonio Esteban Lansaque; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
openurl 
  Title Stable Anatomical Structure Tracking for video-bronchoscopy Navigation Type Conference Article
  Year 2016 Publication 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lung cancer diagnosis; video-bronchoscopy; airway lumen detection; region tracking  
  Abstract Bronchoscopy allows to examine the patient airways for detection of lesions and sampling of tissues without surgery. A main drawback in lung cancer diagnosis is the diculty to check whether the exploration is following the correct path to the nodule that has to be biopsied. The most extended guidance uses uoroscopy which implies repeated radiation of clinical sta and patients. Alternatives such as virtual bronchoscopy or electromagnetic navigation are very expensive and not completely robust to blood, mocus or deformations as to be extensively used. We propose a method that extracts and tracks stable lumen regions at di erent levels of the bronchial tree. The tracked regions are stored in a tree that encodes the anatomical structure of the scene which can be useful to retrieve the path to the lesion that the clinician should follow to do the biopsy. We present a multi-expert validation of our anatomical landmark extraction in 3 intra-operative ultrathin explorations.  
  Address Athens; Greece; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ LSB2016b Serial 2857  
Permanent link to this record
 

 
Author (up) Aura Hernandez-Sabate edit   pdf
isbn  openurl
  Title Exploring Arterial Dynamics and Structures in IntraVascular Ultrasound Sequences Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular diseases are a leading cause of death in developed countries. Most of them are caused by arterial (specially coronary) diseases, mainly caused by plaque accumulation. Such pathology narrows blood flow (stenosis) and affects artery bio- mechanical elastic properties (atherosclerosis). In the last decades, IntraVascular UltraSound (IVUS) has become a usual imaging technique for the diagnosis and follow up of arterial diseases. IVUS is a catheter-based imaging technique which shows a sequence of cross sections of the artery under study. Inspection of a single image gives information about the percentage of stenosis. Meanwhile, inspection of longitudinal views provides information about artery bio-mechanical properties, which can prevent a fatal outcome of the cardiovascular disease. On one hand, dynamics of arteries (due to heart pumping among others) is a major artifact for exploring tissue bio-mechanical properties. On the other one, manual stenosis measurements require a manual tracing of vessel borders, which is a time-consuming task and might suffer from inter-observer variations. This PhD thesis proposes several image processing tools for exploring vessel dy- namics and structures. We present a physics-based model to extract, analyze and correct vessel in-plane rigid dynamics and to retrieve cardiac phase. Furthermore, we introduce a deterministic-statistical method for automatic vessel borders detection. In particular, we address adventitia layer segmentation. An accurate validation pro- tocol to ensure reliable clinical applicability of the methods is a crucial step in any proposal of an algorithm. In this thesis we take special care in designing a valida- tion protocol for each approach proposed and we contribute to the in vivo dynamics validation with a quantitative and objective score to measure the amount of motion suppressed.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-6-4 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Her2009 Serial 1543  
Permanent link to this record
 

 
Author (up) Aura Hernandez-Sabate edit   pdf
openurl 
  Title Automatic adventitia segmentation in IntraVascular UltraSound images Type Report
  Year 2005 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 85 Pages  
  Keywords  
  Abstract A usual tool in cardiac disease diagnosis is vessel plaque assessment by analysis of IVUS sequences. Manual detection of lumen-intima, intima-media and media-adventitia vessel borders is the main activity of physicians in the process of plaque quantification. Large variety in vessel border descriptors, as well as, shades, artifacts and blurred response due to ultrasound physical properties troubles automated media-adventitia segmentation. This experimental work presents a solution to such a complex problem. The process blends advanced anisotropic filtering operators and statistic classification techniques, achieving an efficient vessel border modelling strategy. First of all, we introduce the theoretic base of the method. After that, we show the steps of the algorithm, validating the method with statistics that show that the media-adventitia border detection achieves an accuracy in the range of inter-observer variability regardless of plaque nature, vessel geometry and incomplete vessel borders. Finally, we present a little Matlab application to the automatic media-adventitia border.  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication 08193 Bellaterra, Barcelona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Her2005 Serial 1544  
Permanent link to this record
 

 
Author (up) Aura Hernandez-Sabate; David Rotger; Debora Gil edit   pdf
doi  openurl
  Title Image-based ECG sampling of IVUS sequences Type Conference Article
  Year 2008 Publication Proc. IEEE Ultrasonics Symp. IUS 2008 Abbreviated Journal  
  Volume Issue Pages 1330-1333  
  Keywords Longitudinal Motion; Image-based ECG-gating; Fourier analysis  
  Abstract Longitudinal motion artifacts in IntraVascular UltraSound (IVUS) sequences hinders a properly 3D reconstruction and vessel measurements. Most of current techniques base on the ECG signal to obtain a gated pullback without the longitudinal artifact by using a specific hardware or the ECG signal itself. The potential of IVUS images processing for phase retrieval still remains little explored. In this paper, we present a fast forward image-based algorithm to approach ECG sampling. Inspired on the fact that maximum and minimum lumen areas are related to end-systole and end-diastole, our cardiac phase retrieval is based on the analysis of tissue density of mass along the sequence. The comparison between automatic and manual phase retrieval (0.07 ± 0.07 mm. of error) encourages a deep validation contrasting with ECG signals.  
  Address Beijing (China)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ HRG2008 Serial 1553  
Permanent link to this record
 

 
Author (up) Aura Hernandez-Sabate; Debora Gil edit   pdf
url  doi
isbn  openurl
  Title The Benefits of IVUS Dynamics for Retrieving Stable Models of Arteries Type Book Chapter
  Year 2012 Publication Intravascular Ultrasound Abbreviated Journal  
  Volume Issue Pages 185-206  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Intech Place of Publication Editor Yasuhiro Honda  
  Language English Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-953-307-900-4 Medium  
  Area Expedition Conference  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ HeG2012 Serial 1684  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: