toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jaume Garcia; Debora Gil; Joel Barajas; Francesc Carreras; Sandra Pujades; Petia Radeva edit   pdf
openurl 
  Title Characterization of ventricular torsion in healthy subjects using Gabor filters and a variational framework Type Conference Article
  Year 2006 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume Issue Pages 877-880  
  Keywords  
  Abstract In this work, we present a fully automated method for tissue deformation estimation in tagged magnetic resonance images (TMRI). Gabor filter banks, tuned independently for each left ventricle level, provide optimally filtered complex images which phase remains constant along the cardiac cycle. This fact can be thought as the brightness constancy condition required by classical optical flow (OF) methods. Pairs of these filtered sequences, together with a variational formulation are used in a second step to obtain dense continuous deformation maps that we call Harmonic Phase Flow. This method has been used to determine reference values of ventricular torsion (VT) in a set of 8 healthy volunteers. The results encourage the use of VT as a useful parameter for ventricular function assessment in clinical routine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved (up) no  
  Call Number IAM @ iam @ GGB2006a Serial 1509  
Permanent link to this record
 

 
Author Jaume Garcia; Francesc Carreras; Sandra Pujades; Debora Gil edit   pdf
doi  openurl
  Title Regional motion patterns for the Left Ventricle function assessment Type Conference Article
  Year 2008 Publication Proc. 19th Int. Conf. Pattern Recognition ICPR 2008 Abbreviated Journal  
  Volume Issue Pages 1-4  
  Keywords  
  Abstract Regional scores (e.g. strain, perfusion) of the Left Ventricle (LV) functionality are playing an increasing role in the diagnosis of cardiac diseases. A main limitation is the lack of normality models for complementary scores oriented to assessment of the LV integrity. This paper introduces an original framework based on a parametrization of the LV domain, which allows comparison across subjects of local physiological measures of different nature. We compute regional normality patterns in a feature space characterizing the LV function. We show the consistency of the model for the regional motion on healthy and hypokinetic pathological cases  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved (up) no  
  Call Number IAM @ iam @ GCP2008 Serial 1510  
Permanent link to this record
 

 
Author Jaume Garcia; David Rotger; Francesc Carreras; R.Leta; Petia Radeva edit   pdf
doi  isbn
openurl 
  Title Contrast echography segmentation and tracking by trained deformable models Type Conference Article
  Year 2003 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume 30 Issue Pages 173-176  
  Keywords  
  Abstract The objective of this work is to segment the human left ventricle myocardium (LVM) in contrast echocardiography imaging and thus track it along a cardiac cycle in order to extract quantitative data about heart function. Ultrasound images are hard to work with due to their speckle appearance. To overcome this we report the combination of active contour models (ACM) or snakes and active shape models (ASM). The ability of ACM in giving closed and smooth curves in addition to the power of the ASM in producing shapes similar to the ones learned, evoke to a robust algorithm. Meanwhile the snake is attracted towards image main features, ASM acts as a correction factor. The algorithm was tested independently on 180 frames and satisfying results were obtained: in 95% the maximum difference between automatic and experts segmentation was less than 12 pixels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Centre de Visió per Computador – Dept. Informàtica, UAB Edifici O – Campus UAB, 08193 Bellater Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0276-6547 ISBN 0-7803-8170-X Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved (up) no  
  Call Number IAM @ iam @ GRC2003 Serial 1512  
Permanent link to this record
 

 
Author Jaume Garcia edit   pdf
openurl 
  Title Generalized Active Shape Models Applied to Cardiac Function Analysis Type Report
  Year 2004 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 78 Pages  
  Keywords Cardiac Analysis; Deformable Models; Active Contour Models; Active Shape Models; Tagged MRI; HARP; Contrast Echocardiography.  
  Abstract Medical imaging is very useful in the assessment and treatment of many diseases. To deal with the great amount of data provided by imaging scanners and extract quantitative information that physicians can interpret, many analysis algorithms have been developed. Any process of analysis always consists of a first step of segmenting some particular structure. In medical imaging, structures are not always well defined and suffer from noise artifacts thus, ordinary segmentation methods are not well suited. The ones that seem to give better results are those based on deformable models. Nevertheless, despite their capability of mixing image features together with smoothness constraints that may compensate for image irregularities, these are naturally local methods, i. e., each node of the active contour evolve taking into account information about its neighbors and some other weak constraints about flexibility and smoothness, but not about the global shape that they should find. Due to the fact that structures to be segmented are the same for all cases but with some inter and intra-patient variation, the incorporation of a priori knowledge about shape in the segmentation method will provide robustness to it. Active Shape Models is an algorithm based on the creation of a shape model called Point Distribution Model. It performs a segmentation using only shapes similar than those previously learned from a training set that capture most of the variation presented by the structure. This algorithm works by updating shape nodes along a normal segment which often can be too restrictive. For this reason we propose a generalization of this algorithm that we call Generalized Active Shape Models and fully integrates the a priori knowledge given by the Point Distribution Model with deformable models or any other appropriate segmentation method. Two different applications to cardiac imaging of this generalized method are developed and promising results are shown.  
  Address CVC (UAB)  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved (up) no  
  Call Number IAM @ iam @ Gar2004 Serial 1513  
Permanent link to this record
 

 
Author Jaume Garcia; Albert Andaluz; Debora Gil; Francesc Carreras edit   pdf
url  doi
isbn  openurl
  Title Decoupled External Forces in a Predictor-Corrector Segmentation Scheme for LV Contours in Tagged MR Images Type Conference Article
  Year 2010 Publication 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal  
  Volume Issue Pages 4805-4808  
  Keywords  
  Abstract Computation of functional regional scores requires proper identification of LV contours. On one hand, manual segmentation is robust, but it is time consuming and requires high expertise. On the other hand, the tag pattern in TMR sequences is a problem for automatic segmentation of LV boundaries. We propose a segmentation method based on a predictorcorrector (Active Contours – Shape Models) scheme. Special stress is put in the definition of the AC external forces. First, we introduce a semantic description of the LV that discriminates myocardial tissue by using texture and motion descriptors. Second, in order to ensure convergence regardless of the initial contour, the external energy is decoupled according to the orientation of the edges in the image potential. We have validated the model in terms of error in segmented contours and accuracy of regional clinical scores.  
  Address Buenos Aires (Argentina)  
  Corporate Author IEEE EMB Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-170X ISBN 978-1-4244-4123-5 Medium  
  Area Expedition Conference EMBC  
  Notes IAM Approved (up) no  
  Call Number IAM @ iam @ GAG2010 Serial 1514  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title Endowing Canonical Geometries to Cardiac Structures Type Book Chapter
  Year 2010 Publication Statistical Atlases And Computational Models Of The Heart Abbreviated Journal  
  Volume 6364 Issue Pages 124-133  
  Keywords  
  Abstract International conference on Cardiac electrophysiological simulation challenge
In this paper, we show that canonical (shape-based) geometries can be endowed to cardiac structures using tubular coordinates defined over their medial axis. We give an analytic formulation of these geometries by means of B-Splines. Since B-Splines present vector space structure PCA can be applied to their control points and statistical models relating boundaries and the interior of the anatomical structures can be derived. We demonstrate the applicability in two cardiac structures, the 3D Left Ventricular volume, and the 2D Left-Right ventricle set in 2D Short Axis view.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor Camara, O.; Pop, M.; Rhode, K.; Sermesant, M.; Smith, N.; Young, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved (up) no  
  Call Number IAM @ iam @ GGH2010b Serial 1515  
Permanent link to this record
 

 
Author M.Gomez; Josefina Mauri; Eduard Fernandez-Nofrerias; Oriol Rodriguez-Leon; Carme Julia; Debora Gil; Petia Radeva edit  openurl
  Title Reconstrucción de un modelo espacio-temporal de la luz del vaso a partir de secuencias de ecografía intracoronaria Type Conference Article
  Year 2002 Publication XXXVIII Congreso Nacional de la Sociedad Española de Cardiología. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS;MILAB Approved (up) no  
  Call Number IAM @ iam @ GMF2002d Serial 1516  
Permanent link to this record
 

 
Author Debora Gil edit   pdf
isbn  openurl
  Title Geometric Differential Operators for Shape Modelling Type Book Whole
  Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor Jordi Saludes i Closa;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-0-3 Medium prit  
  Area Expedition Conference  
  Notes IAM; Approved (up) no  
  Call Number IAM @ iam @ GIL2004 Serial 1517  
Permanent link to this record
 

 
Author Debora Gil edit  openurl
  Title Regularized Curvature Flow Type Report
  Year 2002 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 63 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Computer Vision Centre Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved (up) no  
  Call Number IAM @ iam @ Gil2002 Serial 1518  
Permanent link to this record
 

 
Author Debora Gil; Jose Maria-Carazo; Roberto Marabini edit   pdf
doi  openurl
  Title On the nature of 2D crystal unbending Type Journal Article
  Year 2006 Publication Journal of Structural Biology Abbreviated Journal  
  Volume 156 Issue 3 Pages 546-555  
  Keywords Electron microscopy  
  Abstract Crystal unbending, the process that aims to recover a perfect crystal from experimental data, is one of the more important steps in electron crystallography image processing. The unbending process involves three steps: estimation of the unit cell displacements from their ideal positions, extension of the deformation field to the whole image and transformation of the image in order to recover an ideal crystal. In this work, we present a systematic analysis of the second step oriented to address two issues. First, whether the unit cells remain undistorted and only the distance between them should be changed (rigid case) or should be modified with the same deformation suffered by the whole crystal (elastic case). Second, the performance of different extension algorithms (interpolation versus approximation) is explored. Our experiments show that there is no difference between elastic and rigid cases or among the extension algorithms. This implies that the deformation fields are constant over large areas. Furthermore, our results indicate that the main source of error is the transformation of the crystal image.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1047-8477 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved (up) no  
  Call Number IAM @ iam @ GCM2006 Serial 1519  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: