toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Vera; Debora Gil; Agnes Borras; F. Javier Sanchez; Frederic Perez; Marius G. Linguraru edit  openurl
  Title Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs Type Conference Article
  Year 2011 Publication Workshop on Computational and Clinical Applications in Abdominal Imaging Abbreviated Journal  
  Volume 7029 Issue Pages 223-230  
  Keywords  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address (up) Nice, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor In H. Yoshida et al  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ABDI  
  Notes IAM; MV Approved no  
  Call Number VGB2011 Serial 2036  
Permanent link to this record
 

 
Author Sergio Vera edit  isbn
openurl 
  Title Anatomic Registration based on Medial Axis Parametrizations Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of di erent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to speci c anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at speci c locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the de nition of a depth coordinate. However, given that di erent methods for generation of medial surfaces generate di erent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference.
 
  Address (up) November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Miguel Angel Gonzalez Ballester  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-8-3 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Ver2015 Serial 2708  
Permanent link to this record
 

 
Author Antonio Esteban Lansaque edit  isbn
openurl 
  Title An Endoscopic Navigation System for Lung Cancer Biopsy Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Lung cancer is one of the most diagnosed cancers among men and women. Actually,
lung cancer accounts for 13% of the total cases with a 5-year global survival
rate in patients. Although Early detection increases survival rate from 38% to 67%, accurate diagnosis remains a challenge. Pathological confirmation requires extracting a sample of the lesion tissue for its biopsy. The preferred procedure for tissue biopsy is called bronchoscopy. A bronchoscopy is an endoscopic technique for the internal exploration of airways which facilitates the performance of minimal invasive interventions with low risk for the patient. Recent advances in bronchoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures, like lung cancer biopsy sampling. Despite the improvement in bronchoscopic device quality, there is a lack of intelligent computational systems for supporting in-vivo clinical decision during examinations. Existing technologies fail to accurately reach the lesion due to several aspects at intervention off-line planning and poor intra-operative guidance at exploration time. Existing guiding systems radiate patients and clinical staff,might be expensive and achieve a suboptimlal 70% of yield boost. Diagnostic yield could be improved reducing radiation and costs by developing intra-operative support systems able to guide the bronchoscopist to the lesion during the intervention. The goal of this PhD thesis is to develop an image-based navigation systemfor intra-operative guidance of bronchoscopists to a target lesion across a path previously planned on a CT-scan. We propose a 3D navigation system which uses the anatomy of video bronchoscopy frames to locate the bronchoscope within the airways. Once the bronchoscope is located, our navigation system is able to indicate the bifurcation which needs to be followed to reach the lesion. In order to facilitate an off-line validation
as realistic as possible, we also present a method for augmenting simulated virtual bronchoscopies with the appearance of intra-operative videos. Experiments performed on augmented and intra-operative videos, prove that our algorithm can be speeded up for an on-line implementation in the operating room.
 
  Address (up) October 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Carles Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-0-2 Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ Est2019 Serial 3392  
Permanent link to this record
 

 
Author Gemma Sanchez; Josep Llados; Enric Marti edit  url
openurl 
  Title Segmentation and analysis of linial texture in plans Type Conference Article
  Year 1997 Publication Intelligence Artificielle et Complexité. Abbreviated Journal  
  Volume Issue Pages  
  Keywords Structural Texture, Voronoi, Hierarchical Clustering, String Matching.  
  Abstract The problem of texture segmentation and interpretation is one of the main concerns in the field of document analysis. Graphical documents often contain areas characterized by a structural texture whose recognition allows both the document understanding, and its storage in a more compact way. In this work, we focus on structural linial textures of regular repetition contained in plan documents. Starting from an atributed graph which represents the vectorized input image, we develop a method to segment textured areas and recognize their placement rules. We wish to emphasize that the searched textures do not follow a predefined pattern. Minimal closed loops of the input graph are computed, and then hierarchically clustered. In this hierarchical clustering, a distance function between two closed loops is defined in terms of their areas difference and boundary resemblance computed by a string matching procedure. Finally it is noted that, when the texture consists of isolated primitive elements, the same method can be used after computing a Voronoi Tesselation of the input graph.  
  Address (up) Paris, France  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AERFAI  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ SLM1997 Serial 1649  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
openurl 
  Title Using statistical inference for designing termination conditions ensuring convergence of Evolutionary Algorithms Type Conference Article
  Year 2011 Publication 11th European Conference on Artificial Life Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract A main challenge in Evolutionary Algorithms (EAs) is determining a termination condition ensuring stabilization close to the optimum in real-world applications. Although for known test functions distribution-based quantities are good candidates (as far as suitable parameters are used), in real-world problems an open question still remains unsolved. How can we estimate an upper-bound for the termination condition value ensuring a given accuracy for the (unknown) EA solution?
We claim that the termination problem would be fully solved if we defined a quantity (depending only on the EA output) behaving like the solution accuracy. The open question would be, then, satisfactorily answered if we had a model relating both quantities, since accuracy could be predicted from the alternative quantity. We present a statistical inference framework addressing two topics: checking the correlation between the two quantities and defining a regression model for predicting (at a given confidence level) accuracy values from the EA output.
 
  Address (up) Paris, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECAL  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ RGG2011b Serial 1678  
Permanent link to this record
 

 
Author Carles Sanchez; Antonio Esteban Lansaque; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
openurl 
  Title Towards a Videobronchoscopy Localization System from Airway Centre Tracking Type Conference Article
  Year 2017 Publication 12th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume Issue Pages 352-359  
  Keywords Video-bronchoscopy; Lung cancer diagnosis; Airway lumen detection; Region tracking; Guided bronchoscopy navigation  
  Abstract Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a
feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
 
  Address (up) Porto; Portugal; February 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ SEB2017 Serial 2943  
Permanent link to this record
 

 
Author Carles Sanchez; Debora Gil; Jorge Bernal; F. Javier Sanchez; Marta Diez-Ferrer; Antoni Rosell edit   pdf
openurl 
  Title Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches Type Conference Article
  Year 2016 Publication 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops Abbreviated Journal  
  Volume 9401 Issue Pages 62-70  
  Keywords Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy  
  Abstract Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface.  
  Address (up) Quebec; Canada; September 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; MV; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ SGB2016 Serial 2885  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Elisa Minchole; Carles Sanchez; Noelia Cubero de Frutos; Marta Diez-Ferrer; Rosa Maria Ortiz; Antoni Rosell edit   pdf
url  openurl
  Title Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer Type Conference Article
  Year 2017 Publication 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging Abbreviated Journal  
  Volume 10550 Issue Pages 151-159  
  Keywords  
  Abstract Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
 
  Address (up) Quebec; Canada; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CLIP  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GRM2017 Serial 2957  
Permanent link to this record
 

 
Author Carles Sanchez; Debora Gil; T. Gache; N. Koufos; Marta Diez-Ferrer; Antoni Rosell edit   pdf
openurl 
  Title SENSA: a System for Endoscopic Stenosis Assessment Type Conference Article
  Year 2016 Publication 28th Conference of the international Society for Medical Innovation and Technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Documenting the severity of a static or dynamic Central Airway Obstruction (CAO) is crucial to establish proper diagnosis and treatment, predict possible treatment effects and better follow-up the patients. The subjective visual evaluation of a stenosis during video-bronchoscopy still remains the most common way to assess a CAO in spite of a consensus among experts for a need to standardize all calculations [1].
The Computer Vision Center in cooperation with the «Hospital de Bellvitge», has developed a System for Endoscopic Stenosis Assessment (SENSA), which computes CAO directly by analyzing standard bronchoscopic data without the need of using other imaging tecnologies.
 
  Address (up) Rotterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SMIT  
  Notes IAM; Approved no  
  Call Number Admin @ si @ SGG2016 Serial 2942  
Permanent link to this record
 

 
Author Petia Radeva; A.Amini; J.Huang; Enric Marti edit   pdf
url  doi
isbn  openurl
  Title Deformable B-Solids and Implicit Snakes for Localization and Tracking of SPAMM MRI-Data Type Conference Article
  Year 1996 Publication Workshop on Mathematical Methods in Biomedical Image Analysis Abbreviated Journal  
  Volume Issue Pages 192-201  
  Keywords  
  Abstract To date, MRI-SPAMM data from different image slices have been analyzed independently. In this paper, we propose an approach for 3D tag localization and tracking of SPAMM data by a novel deformable B-solid. The solid is defined in terms of a 3D tensor product B-spline. The isoparametric curves of the B-spline solid have special importance. These are termed implicit snakes as they deform under image forces from tag lines in different image slices. The localization and tracking of tag lines is performed under constraints of continuity and smoothness of the B-solid. The framework unifies the problems of localization, and displacement fitting and interpolation into the same procedure utilizing B-spline bases for interpolation. To track motion from boundaries and restrict image forces to the myocardium, a volumetric model is employed as a pair of coupled endocardial and epicardial B-spline surfaces. To recover deformations in the LV an energy-minimization problem is posed where both tag and ...  
  Address (up) San Francisco CA  
  Corporate Author Thesis  
  Publisher IEEE Computer Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-8186-7368-0 Medium  
  Area Expedition Conference MMBIA ’96  
  Notes MILAB;IAM; Approved no  
  Call Number IAM @ iam @ RAH1996 Serial 1630  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: