toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Marta Diez-Ferrer; Debora Gil; Elena Carreño; Susana Padrones; Samantha Aso; Vanesa Vicens; Cubero Noelia; Rosa Lopez Lisbona; Carles Sanchez; Agnes Borras; Antoni Rosell edit  url
openurl 
  Title Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation Type Journal Article
  Year 2016 Publication Chest Journal Abbreviated Journal (up) CHEST  
  Volume 150 Issue 4 Pages 1003A  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.075 Approved no  
  Call Number Admin @ si @ DGC2016 Serial 3099  
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; B. Cardenas; G. Fonseka; E. Anton; Alvaro Pascual; Richard Frodsham; Zaida Sarrate edit  doi
openurl 
  Title Time to match; when do homologous chromosomes become closer? Type Journal Article
  Year 2022 Publication Chromosoma Abbreviated Journal (up) CHRO  
  Volume Issue Pages  
  Keywords  
  Abstract In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a threedimensional fuorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.  
  Address August, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 601.139; 600.145; 600.096 Approved no  
  Call Number Admin @ si @ SBG2022 Serial 3719  
Permanent link to this record
 

 
Author Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Debora Gil; Cristina Rodriguez de Miguel; Fernando Vilariño edit   pdf
doi  openurl
  Title WM-DOVA Maps for Accurate Polyp Highlighting in Colonoscopy: Validation vs. Saliency Maps from Physicians Type Journal Article
  Year 2015 Publication Computerized Medical Imaging and Graphics Abbreviated Journal (up) CMIG  
  Volume 43 Issue Pages 99-111  
  Keywords Polyp localization; Energy Maps; Colonoscopy; Saliency; Valley detection  
  Abstract We introduce in this paper a novel polyp localization method for colonoscopy videos. Our method is based on a model of appearance for polyps which defines polyp boundaries in terms of valley information. We propose the integration of valley information in a robust way fostering complete, concave and continuous boundaries typically associated to polyps. This integration is done by using a window of radial sectors which accumulate valley information to create WMDOVA1 energy maps related with the likelihood of polyp presence. We perform a double validation of our maps, which include the introduction of two new databases, including the first, up to our knowledge, fully annotated database with clinical metadata associated. First we assess that the highest value corresponds with the location of the polyp in the image. Second, we show that WM-DOVA energy maps can be comparable with saliency maps obtained from physicians' fixations obtained via an eye-tracker. Finally, we prove that our method outperforms state-of-the-art computational saliency results. Our method shows good performance, particularly for small polyps which are reported to be the main sources of polyp miss-rate, which indicates the potential applicability of our method in clinical practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-6111 ISBN Medium  
  Area Expedition Conference  
  Notes MV; IAM; 600.047; 600.060; 600.075;SIAI Approved no  
  Call Number Admin @ si @ BSF2015 Serial 2609  
Permanent link to this record
 

 
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil edit   pdf
doi  openurl
  Title BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation Type Journal Article
  Year 2023 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal (up) CMPB  
  Volume 228 Issue Pages 107241  
  Keywords Videobronchoscopy guiding; Deep learning; Architecture optimization; Datasets; Standardized evaluation framework; Pose estimation  
  Abstract Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions.
In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number Admin @ si @ BSC2023 Serial 3702  
Permanent link to this record
 

 
Author Debora Gil; David Roche; Agnes Borras; Jesus Giraldo edit  doi
openurl 
  Title Terminating Evolutionary Algorithms at their Steady State Type Journal Article
  Year 2015 Publication Computational Optimization and Applications Abbreviated Journal (up) COA  
  Volume 61 Issue 2 Pages 489-515  
  Keywords Evolutionary algorithms; Termination condition; Steady state; Differential evolution  
  Abstract Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-6003 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.044; 605.203; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ GRB2015 Serial 2560  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit  url
doi  openurl
  Title Multiple active receptor conformation, agonist efficacy and maximum effect of the system: the conformation-based operational model of agonism, Type Journal Article
  Year 2013 Publication Drug Discovery Today Abbreviated Journal (up) DDT  
  Volume 18 Issue 7-8 Pages 365-371  
  Keywords  
  Abstract The operational model of agonism assumes that the maximum effect a particular receptor system can achieve (the Em parameter) is fixed. Em estimates are above but close to the asymptotic maximum effects of endogenous agonists. The concept of Em is contradicted by superagonists and those positive allosteric modulators that significantly increase the maximum effect of endogenous agonists. An extension of the operational model is proposed that assumes that the Em parameter does not necessarily have a single value for a receptor system but has multiple values associated to multiple active receptor conformations. The model provides a mechanistic link between active receptor conformation and agonist efficacy, which can be useful for the analysis of agonist response under different receptor scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.057; 600.054 Approved no  
  Call Number IAM @ iam @ RGG2013a Serial 2190  
Permanent link to this record
 

 
Author Alberto Hidalgo; Ferran Poveda; Enric Marti;Debora Gil;Albert Andaluz; Francesc Carreras; Manuel Ballester edit   pdf
url  doi
openurl 
  Title Evidence of continuous helical structure of the cardiac ventricular anatomy assessed by diffusion tensor imaging magnetic resonance multiresolution tractography Type Journal Article
  Year 2012 Publication European Radiology Abbreviated Journal (up) ECR  
  Volume 3 Issue 1 Pages 361-362  
  Keywords  
  Abstract Deep understanding of myocardial structure linking morphology and func- tion of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Diffusion tensor MRI provides a discrete measurement of the 3D arrangement of myocardial fibres by the observation of local anisotropic
diffusion of water molecules in biological tissues. In this work, we present a multi- scale visualisation technique based on DT-MRI streamlining capable of uncovering additional properties of the architectural organisation of the heart. Methods and Materials: We selected the John Hopkins University (JHU) Canine Heart Dataset, where the long axis cardiac plane is aligned with the scanner’s Z- axis. Their equipment included a 4-element passed array coil emitting a 1.5 T. For DTI acquisition, a 3D-FSE sequence is apply. We used 200 seeds for full-scale tractography, while we applied a MIP mapping technique for simplified tractographic reconstruction. In this case, we reduced each DTI 3D volume dimensions by order- two magnitude before streamlining.
Our simplified tractographic reconstruction method keeps the main geometric features of fibres, allowing for an easier identification of their global morphological disposition, including the ventricular basal ring. Moreover, we noticed a clearly visible helical disposition of the myocardial fibres, in line with the helical myocardial band ventricular structure described by Torrent-Guasp. Finally, our simplified visualisation with single tracts identifies the main segments of the helical ventricular architecture.
DT-MRI makes possible the identification of a continuous helical architecture of the myocardial fibres, which validates Torrent-Guasp’s helical myocardial band ventricular anatomical model.
 
  Address Viena, Austria  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1869-4101 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ HPM2012 Serial 1858  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; Ignasi Garcia Olive; Maite Salcedo Pujantell; Jordi Deportos; Carles Sanchez; Guillermo Torres; Gloria Moragas; Antoni Rosell edit  url
doi  openurl
  Title Correction: A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients Type Journal Article
  Year 2023 Publication European Journal of Nuclear Medicine and Molecular Imaging Abbreviated Journal (up) EJNMMI PHYSICS  
  Volume 10 Issue 1 Pages 13  
  Keywords early diagnosis; Lung Cancer; nodule diagnosis; nodule diagnosis; Radiomics; Screening  
  Abstract This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number BGG2023 Serial 3858  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; I.Garcia Olive; M.Salcedo; J.Deportos; Carles Sanchez; Guillermo Torres; G.Moragas; Antoni Rosell edit  doi
openurl 
  Title A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients Type Journal Article
  Year 2022 Publication EJNMMI Physics Abbreviated Journal (up) EJNMMI-PHYS  
  Volume 9 Issue 1, Article 84 Pages 1-17  
  Keywords  
  Abstract Background: COVID-19 infection, especially in cases with pneumonia, is associated with a high rate of pulmonary embolism (PE). In patients with contraindications for CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic alternative. The goal of this study is to develop a radiomic diagnostic system to detect PE based only on the analysis of Q-SPECT/CT scans.
Methods: This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT volumes that includes both CT and Q-SPECT values for each volume point. We present a combined approach that uses radiomic features extracted from each scan as input into a fully connected classifcation neural network that optimizes a weighted crossentropy loss trained to discriminate between three diferent types of image patterns (pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of models using diferent confguration of parameters were tested.
Results: The proposed radiomic diagnostic system was trained on 20 patients (4,927 sets of samples of three types of image patterns) and validated in a group of 39 patients (4,410 sets of samples of three types of image patterns). In the training group, COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In the test group, the best model for determining diferent types of image patterns with PE presented a sensitivity, specifcity, positive predictive value and negative predictive value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting
pneumonia presented a sensitivity, specifcity, positive predictive value and negative predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at the pixel sample level are aggregated into regions of interest, the sensitivity of the PE increases to 85%, and all metrics improve for pneumonia.
Conclusion: This radiomic diagnostic system was able to identify the diferent lung imaging patterns and is a frst step toward a comprehensive intelligent radiomic system to optimize the diagnosis of PE by Q-SPECT/CT.
 
  Address 5 dec 2022  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ BGG2022 Serial 3759  
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Elena Carreño; Susana Padrones; Samantha Aso; Vanesa Vicens; Noelia Cubero de Frutos; Rosa Lopez Lisbona; Carles Sanchez; Agnes Borras; Antoni Rosell edit   pdf
url  openurl
  Title Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation Type Journal Article
  Year 2017 Publication European Respiratory Journal Abbreviated Journal (up) ERJ  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ DGC2017b Serial 3632  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: