toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jaume Garcia edit   pdf
openurl 
  Title Statistical Models of the Architecture and Function of the Left Ventricle Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular Diseases, specially those affecting the Left Ventricle (LV), are the leading cause of death in developed countries with approximately a 30% of all global deaths. In order to address this public health concern, physicians focus on diagnosis and therapy planning. On one hand, early and accurate detection of Regional Wall Motion Abnormalities (RWMA) significantly contributes to a quick diagnosis and prevents the patient to reach more severe stages. On the other hand, a thouroughly knowledge of the normal gross anatomy of the LV, as well as, the distribution of its muscular fibers is crucial for designing specific interventions and therapies (such as pacemaker implanction). Statistical models obtained from the analysis of different imaging modalities allow the computation of the normal ranges of variation within a given population. Normality models are a valuable tool for the definition of objective criterions quantifying the degree of (anomalous) deviation of the LV function and anatomy for a given subject. The creation of statistical models involve addressing three main issues: extraction of data from images, definition of a common domain for comparison of data across patients and designing appropriate statistical analysis schemes. In this PhD thesis we present generic image processing tools for the creation of statistical models of the LV anatomy and function. On one hand, we use differential geometry concepts to define a computational framework (the Normalized Parametric Domain, NPD) suitable for the comparison and fusion of several clinical scores obtained over the LV. On the other hand, we present a variational approach (the Harmonic Phase Flow, HPF) for the estimation of myocardial motion that provides dense and continuous vector fields without overestimating motion at injured areas. These tools are used for the creation of statistical models. Regarding anatomy, we obtain an atlas jointly modelling, both, LV gross anatomy and fiber architecture. Regarding function, we compute normality patterns of scores characterizing the (global and local) LV function and explore, for the first time, the configuration of local scores better suited for RWMA detection.  
  Address  
  Corporate Author Thesis (down) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ Gar2009a Serial 1499  
Permanent link to this record
 

 
Author Jaume Garcia edit   pdf
openurl 
  Title Generalized Active Shape Models Applied to Cardiac Function Analysis Type Report
  Year 2004 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 78 Pages  
  Keywords Cardiac Analysis; Deformable Models; Active Contour Models; Active Shape Models; Tagged MRI; HARP; Contrast Echocardiography.  
  Abstract Medical imaging is very useful in the assessment and treatment of many diseases. To deal with the great amount of data provided by imaging scanners and extract quantitative information that physicians can interpret, many analysis algorithms have been developed. Any process of analysis always consists of a first step of segmenting some particular structure. In medical imaging, structures are not always well defined and suffer from noise artifacts thus, ordinary segmentation methods are not well suited. The ones that seem to give better results are those based on deformable models. Nevertheless, despite their capability of mixing image features together with smoothness constraints that may compensate for image irregularities, these are naturally local methods, i. e., each node of the active contour evolve taking into account information about its neighbors and some other weak constraints about flexibility and smoothness, but not about the global shape that they should find. Due to the fact that structures to be segmented are the same for all cases but with some inter and intra-patient variation, the incorporation of a priori knowledge about shape in the segmentation method will provide robustness to it. Active Shape Models is an algorithm based on the creation of a shape model called Point Distribution Model. It performs a segmentation using only shapes similar than those previously learned from a training set that capture most of the variation presented by the structure. This algorithm works by updating shape nodes along a normal segment which often can be too restrictive. For this reason we propose a generalization of this algorithm that we call Generalized Active Shape Models and fully integrates the a priori knowledge given by the Point Distribution Model with deformable models or any other appropriate segmentation method. Two different applications to cardiac imaging of this generalized method are developed and promising results are shown.  
  Address CVC (UAB)  
  Corporate Author Thesis (down) Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Gar2004 Serial 1513  
Permanent link to this record
 

 
Author Jaume Garcia edit  openurl
  Title Propagacio de fronts per a la segmentacio en imatges IVUS Type Report
  Year 2002 Publication Technical Report Abbreviated Journal  
  Volume Issue 65 Pages  
  Keywords  
  Abstract  
  Address CVC (UAB)  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ Gar2002 Serial 328  
Permanent link to this record
 

 
Author Joel Barajas; Jaume Garcia; Francesc Carreras; Sandra Pujades; Petia Radeva edit   pdf
url  isbn
openurl 
  Title Angle Images Using Gabor Filters in Cardiac Tagged MRI Type Conference Article
  Year 2005 Publication Proceeding of the 2005 conference on Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue Pages 107-114  
  Keywords Angle Images, Gabor Filters, Harp, Tagged Mri  
  Abstract Tagged Magnetic Resonance Imaging (MRI) is a non-invasive technique used to examine cardiac deformation in vivo. An Angle Image is a representation of a Tagged MRI which recovers the relative position of the tissue respect to the distorted tags. Thus cardiac deformation can be estimated. This paper describes a new approach to generate Angle Images using a bank of Gabor filters in short axis cardiac Tagged MRI. Our method improves the Angle Images obtained by global techniques, like HARP, with a local frequency analysis. We propose to use the phase response of a combination of a Gabor filters bank, and use it to find a more precise deformation of the left ventricle. We demonstrate the accuracy of our method over HARP by several experimental results.  
  Address Amsterdam; The Netherlands  
  Corporate Author Thesis (down)  
  Publisher IOS Press Place of Publication Amsterdam, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 1-58603-560-6 Medium  
  Area Expedition Conference CAIRD  
  Notes IAM;MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ BGC2005; IAM @ iam Serial 595  
Permanent link to this record
 

 
Author Jaume Garcia; Joel Barajas; Francesc Carreras; Sandra Pujades; Petia Radeva edit   pdf
doi  isbn
openurl 
  Title An intuitive validation technique to compare local versus global tagged MRI analysis Type Conference Article
  Year 2005 Publication Computers In Cardiology Abbreviated Journal  
  Volume 32 Issue Pages 29–32  
  Keywords  
  Abstract Myocardium appears as a uniform tissue that seen in convectional Magnetic Resonance Images (MRI) shows just the contractile part of its movement. MR Tagging is a unique imaging technique that prints a grid over the tissue which moves according to the underlying movement of the myocardium revealing the true deformation of the cardiac muscle. Optical flow techniques based on spectral information estimate tissue displacement by analyzing information encoded in the phase maps which can be obtained using, local (Gabor) and global (HARP) methods. In this paper we compare both in synthetic and real Tagged MR sequences. We conclude that local method is slightly more accurate than the global one. On the other hand, global method is more efficient as it is much faster and less parameters have to be taken into account  
  Address Lyon (France)  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-7803-9337-6 Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GBC2005 Serial 639  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Mariano Vazquez; Ruth Aris; Guilleaume Houzeaux edit   pdf
isbn  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
 
  Address Venice; Italy  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9788496736559 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GGV2008b Serial 993  
Permanent link to this record
 

 
Author Agata Lapedriza; Jaume Garcia; Ernest Valveny; Robert Benavente; Miquel Ferrer; Gemma Sanchez edit  openurl
  Title Una experiencia de aprenentatge basada en projectes en el ambit de la informatica Type Miscellaneous
  Year 2008 Publication V Jornades d’Innovacio Docent (UAB) Abbreviated Journal  
  Volume Issue Pages 63  
  Keywords  
  Abstract  
  Address Bellaterra (Spain)  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; IAM; DAG; CIC; MV Approved no  
  Call Number BCNPCL @ bcnpcl @ LGV2008 Serial 1030  
Permanent link to this record
 

 
Author Robert Benavente; Ernest Valveny; Jaume Garcia; Agata Lapedriza; Miquel Ferrer; Gemma Sanchez edit  openurl
  Title Una experiencia de adaptacion al EEES de las asignaturas de programacion en Ingenieria Informatica Type Miscellaneous
  Year 2008 Publication V Congreso Iberoamericano de Docencia Universitaria, pp. 213–216 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Valencia  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;DAG;CIC;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ BVG2008 Serial 1031  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Sandra Pujades; Francesc Carreras edit   pdf
openurl 
  Title Valoracion de la Funcion del Ventriculo Izquierdo mediante Modelos Regionales Hiperparametricos Type Journal Article
  Year 2008 Publication Revista Española de Cardiologia Abbreviated Journal  
  Volume 61 Issue 3 Pages 79  
  Keywords  
  Abstract La mayoría de la enfermedades cardiovasculares afectan a las propiedades contráctiles de la banda ventricular helicoidal. Esto se refleja en una variación del comportamiento normal de la función ventricular. Parámetros locales tales como los strains, o la deformación experimentada por el tejido, son indicadores capaces de detectar anomalías funcionales en territorios específicos. A menudo, dichos parámetros son considerados de forma separada. En este trabajo presentamos un marco computacional (el Dominio Paramétrico Normalizado, DPN) que permite integrarlos en hiperparámetros funcionales y estudiar sus rangos de normalidad. Dichos rangos permiten valorar de forma objetiva la función regional de cualquier nuevo paciente. Para ello, consideramos secuencias de resonancia magnética etiquetada a nivel basal, medio y apical. Los hiperparámetros se obtienen a partir del movimiento intramural del VI estimado mediante el método Harmonic Phase Flow. El DPN se define a partir de en una parametrización del Ventrículo Izquierdo (VI) en sus coordenadas radiales y circunferencial basada en criterios anatómicos. El paso de los hiperparámetros al DPN hace posible la comparación entre distintos pacientes. Los rangos de normalidad se definen mediante análisis estadístico de valores de voluntarios sanos en 45 regiones del DPN a lo largo de 9 fases sistólicas. Se ha usado un conjunto de 19 (14 H; E: 30.7±7.5) voluntarios sanos para crear los patrones de normalidad y se han validado usando 2 controles sanos y 3 pacientes afectados de contractilidad global reducida. Para los controles los resultados regionales se han ajustado dentro de la normalidad, mientras que para los pacientes se han obtenido valores anormales en las zonas descritas, localizando y cuantificando así el diagnóstico empírico.  
  Address  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GRP2008 Serial 1032  
Permanent link to this record
 

 
Author C. Santa-Marta; Jaume Garcia; A. Bajo; J.J. Vaquero; M. Ledesma-Carbayo; Debora Gil edit  openurl
  Title Influence of the Temporal Resolution on the Quantification of Displacement Fields in Cardiac Magnetic Resonance Tagged Images Type Conference Article
  Year 2008 Publication XXVI Congreso Anual de la Sociedad Española de Ingenieria Biomedica Abbreviated Journal  
  Volume Issue Pages 352–353  
  Keywords  
  Abstract It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possibl e. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.  
  Address Valladolid  
  Corporate Author Thesis (down)  
  Publisher Place of Publication Editor Roberto hornero, Saniel Abasolo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CASEIB  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ SGB2008 Serial 1033  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: