toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Jaume Garcia; Mariano Vazquez; Ruth Aris; Guilleaume Houzeaux edit   pdf
isbn  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
 
  Address Venice; Italy  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9788496736559 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GGV2008b Serial 993  
Permanent link to this record
 

 
Author C. Santa-Marta; Jaume Garcia; A. Bajo; J.J. Vaquero; M. Ledesma-Carbayo; Debora Gil edit  openurl
  Title Influence of the Temporal Resolution on the Quantification of Displacement Fields in Cardiac Magnetic Resonance Tagged Images Type Conference Article
  Year 2008 Publication XXVI Congreso Anual de la Sociedad Española de Ingenieria Biomedica Abbreviated Journal  
  Volume Issue Pages 352–353  
  Keywords  
  Abstract It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possibl e. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.  
  Address Valladolid  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor Roberto hornero, Saniel Abasolo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CASEIB  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ SGB2008 Serial 1033  
Permanent link to this record
 

 
Author Cristina Cañero; Petia Radeva; Oriol Pujol; Ricardo Toledo; Debora Gil; J. Saludes; Juan J. Villanueva; B. Garcia del Blanco; J. Mauri; E. Fernandez-Nofrerias; J.A. Gomez-Hospital; E. Iraculis; J. Comin; C. Quiles; F. Jara; A. Cequier; E. Esplugas edit   pdf
openurl 
  Title Optimal Stent Implantation: Three-dimensional Evaluation of the Mutual Position of Stent and Vessel via Intracoronary Ecography Type Conference Article
  Year 1999 Publication Proceedings of International Conference on Computer in Cardiology (CIC´99) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We present a new automatic technique to visualize and quantify the mutual position between the stent and the vessel wall by considering their three-dimensional reconstruction. Two deformable generalized cylinders adapt to the image features in all IVUS planes corresponding to the vessel wall and the stent in order to reconstruct the boundaries of the stent and the vessel in space. The image features that characterize the stent and the vessel wall are determined in terms of edge and ridge image detectors taking into account the gray level of the image pixels. We show that the 30 reconstruction by deformable cylinders is accurate and robust due to the spatial data coherence in the considered volumetric IVUS image. The main clinic utility of the stent and vessel reconstruction by deformable’ cylinders consists of its possibility to visualize and to assess the optimal stent introduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; RV; IAM; ADAS; HuPBA Approved no  
  Call Number IAM @ iam @ CRP1999a Serial 1491  
Permanent link to this record
 

 
Author Cristina Cañero; Petia Radeva; Oriol Pujol; Ricardo Toledo; Debora Gil; J. Saludes; Juan J. Villanueva; B. Garcia del Blanco; Josefina Mauri; Eduard Fernandez-Nofrerias; J.A. Gomez-Hospital; E. Iraculis; J. Comin; C. Quiles; F. Jara; A. Cequier; E.Esplugas edit   pdf
openurl 
  Title Three-dimensional reconstruction and quantification of the coronary tree using intravascular ultrasound images Type Conference Article
  Year 1999 Publication Proceedings of International Conference on Computer in Cardiology (CIC´99) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper we propose a new Computer Vision technique to reconstruct the vascular wall in space using a deformable model-based technique and compounding methods, based in biplane angiography and intravascular ultrasound data jicsion. It is also proposed a generalpurpose three-dimensional guided interpolation method. The three dimensional centerline of the vessel is reconstructed from geometrically corrected biplane angiographies using automatic segmentation methods and snakes. The IVUS image planes are located in the threedimensional space and correctly oriented. A led interpolation method based in B-SurJaces and snakes isused to fill the gaps among image planes  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CINC99  
  Notes MILAB;RV;IAM;ADAS;HuPBA Approved no  
  Call Number IAM @ iam @ CRP1999b Serial 1492  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; A.Bajo; M.J.Ledesma-Carbayo; C.SantaMarta edit   pdf
doi  openurl
  Title Influence of the temporal resolution on the quantification of displacement fields in cardiac magnetic resonance tagged images Type Conference Article
  Year 2008 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume 35 Issue Pages 785-788  
  Keywords  
  Abstract It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possible. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor Alan Murray  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGB2008 Serial 1508  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Joel Barajas; Francesc Carreras; Sandra Pujades; Petia Radeva edit   pdf
openurl 
  Title Characterization of ventricular torsion in healthy subjects using Gabor filters and a variational framework Type Conference Article
  Year 2006 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume Issue Pages 877-880  
  Keywords  
  Abstract In this work, we present a fully automated method for tissue deformation estimation in tagged magnetic resonance images (TMRI). Gabor filter banks, tuned independently for each left ventricle level, provide optimally filtered complex images which phase remains constant along the cardiac cycle. This fact can be thought as the brightness constancy condition required by classical optical flow (OF) methods. Pairs of these filtered sequences, together with a variational formulation are used in a second step to obtain dense continuous deformation maps that we call Harmonic Phase Flow. This method has been used to determine reference values of ventricular torsion (VT) in a set of 8 healthy volunteers. The results encourage the use of VT as a useful parameter for ventricular function assessment in clinical routine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GGB2006a Serial 1509  
Permanent link to this record
 

 
Author Jaume Garcia; Francesc Carreras; Sandra Pujades; Debora Gil edit   pdf
doi  openurl
  Title Regional motion patterns for the Left Ventricle function assessment Type Conference Article
  Year 2008 Publication Proc. 19th Int. Conf. Pattern Recognition ICPR 2008 Abbreviated Journal  
  Volume Issue Pages 1-4  
  Keywords  
  Abstract Regional scores (e.g. strain, perfusion) of the Left Ventricle (LV) functionality are playing an increasing role in the diagnosis of cardiac diseases. A main limitation is the lack of normality models for complementary scores oriented to assessment of the LV integrity. This paper introduces an original framework based on a parametrization of the LV domain, which allows comparison across subjects of local physiological measures of different nature. We compute regional normality patterns in a feature space characterizing the LV function. We show the consistency of the model for the regional motion on healthy and hypokinetic pathological cases  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GCP2008 Serial 1510  
Permanent link to this record
 

 
Author Jaume Garcia; Albert Andaluz; Debora Gil; Francesc Carreras edit   pdf
url  doi
isbn  openurl
  Title Decoupled External Forces in a Predictor-Corrector Segmentation Scheme for LV Contours in Tagged MR Images Type Conference Article
  Year 2010 Publication 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal  
  Volume Issue Pages 4805-4808  
  Keywords  
  Abstract Computation of functional regional scores requires proper identification of LV contours. On one hand, manual segmentation is robust, but it is time consuming and requires high expertise. On the other hand, the tag pattern in TMR sequences is a problem for automatic segmentation of LV boundaries. We propose a segmentation method based on a predictorcorrector (Active Contours – Shape Models) scheme. Special stress is put in the definition of the AC external forces. First, we introduce a semantic description of the LV that discriminates myocardial tissue by using texture and motion descriptors. Second, in order to ensure convergence regardless of the initial contour, the external energy is decoupled according to the orientation of the edges in the image potential. We have validated the model in terms of error in segmented contours and accuracy of regional clinical scores.  
  Address Buenos Aires (Argentina)  
  Corporate Author IEEE EMB Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-170X ISBN 978-1-4244-4123-5 Medium  
  Area Expedition Conference EMBC  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GAG2010 Serial 1514  
Permanent link to this record
 

 
Author M.Gomez; Josefina Mauri; Eduard Fernandez-Nofrerias; Oriol Rodriguez-Leon; Carme Julia; Debora Gil; Petia Radeva edit  openurl
  Title Reconstrucción de un modelo espacio-temporal de la luz del vaso a partir de secuencias de ecografía intracoronaria Type Conference Article
  Year 2002 Publication XXXVIII Congreso Nacional de la Sociedad Española de Cardiología. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS;MILAB Approved no  
  Call Number IAM @ iam @ GMF2002d Serial 1516  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Aura Hernandez-Sabate; Enric Marti edit   pdf
url  doi
openurl 
  Title Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy Type Conference Article
  Year 2010 Publication 8th Medical Imaging Abbreviated Journal  
  Volume 7623 Issue 762304 Pages 304  
  Keywords  
  Abstract Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SPIE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010a Serial 1522  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: