|   | 
Details
   web
Records
Author Yaxing Wang; Abel Gonzalez-Garcia; Luis Herranz; Joost Van de Weijer
Title Controlling biases and diversity in diverse image-to-image translation Type Journal Article
Year (up) 2021 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 202 Issue Pages 103082
Keywords
Abstract JCR 2019 Q2, IF=3.121
The task of unpaired image-to-image translation is highly challenging due to the lack of explicit cross-domain pairs of instances. We consider here diverse image translation (DIT), an even more challenging setting in which an image can have multiple plausible translations. This is normally achieved by explicitly disentangling content and style in the latent representation and sampling different styles codes while maintaining the image content. Despite the success of current DIT models, they are prone to suffer from bias. In this paper, we study the problem of bias in image-to-image translation. Biased datasets may add undesired changes (e.g. change gender or race in face images) to the output translations as a consequence of the particular underlying visual distribution in the target domain. In order to alleviate the effects of this problem we propose the use of semantic constraints that enforce the preservation of desired image properties. Our proposed model is a step towards unbiased diverse image-to-image translation (UDIT), and results in less unwanted changes in the translated images while still performing the wanted transformation. Experiments on several heavily biased datasets show the effectiveness of the proposed techniques in different domains such as faces, objects, and scenes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.141; 600.109; 600.147 Approved no
Call Number Admin @ si @ WGH2021 Serial 3464
Permanent link to this record
 

 
Author Akhil Gurram; Ahmet Faruk Tuna; Fengyi Shen; Onay Urfalioglu; Antonio Lopez
Title Monocular Depth Estimation through Virtual-world Supervision and Real-world SfM Self-Supervision Type Journal Article
Year (up) 2021 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 23 Issue 8 Pages 12738-12751
Keywords
Abstract Depth information is essential for on-board perception in autonomous driving and driver assistance. Monocular depth estimation (MDE) is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Usually, this GT is acquired at training time through a calibrated multi-modal suite of sensors. However, also using only a monocular system at training time is cheaper and more scalable. This is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. In this paper, we perform monocular depth estimation by virtual-world supervision (MonoDEVS) and real-world SfM self-supervision. We compensate the SfM self-supervision limitations by leveraging virtual-world images with accurate semantic and depth supervision and addressing the virtual-to-real domain gap. Our MonoDEVSNet outperforms previous MDE CNNs trained on monocular and even stereo sequences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ GTS2021 Serial 3598
Permanent link to this record
 

 
Author Carola Figueroa Flores
Title Visual Saliency for Object Recognition, and Object Recognition for Visual Saliency Type Book Whole
Year (up) 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords computer vision; visual saliency; fine-grained object recognition; convolutional neural networks; images classification
Abstract For humans, the recognition of objects is an almost instantaneous, precise and
extremely adaptable process. Furthermore, we have the innate capability to learn
new object classes from only few examples. The human brain lowers the complexity
of the incoming data by filtering out part of the information and only processing
those things that capture our attention. This, mixed with our biological predisposition to respond to certain shapes or colors, allows us to recognize in a simple
glance the most important or salient regions from an image. This mechanism can
be observed by analyzing on which parts of images subjects place attention; where
they fix their eyes when an image is shown to them. The most accurate way to
record this behavior is to track eye movements while displaying images.
Computational saliency estimation aims to identify to what extent regions or
objects stand out with respect to their surroundings to human observers. Saliency
maps can be used in a wide range of applications including object detection, image
and video compression, and visual tracking. The majority of research in the field has
focused on automatically estimating saliency maps given an input image. Instead, in
this thesis, we set out to incorporate saliency maps in an object recognition pipeline:
we want to investigate whether saliency maps can improve object recognition
results.
In this thesis, we identify several problems related to visual saliency estimation.
First, to what extent the estimation of saliency can be exploited to improve the
training of an object recognition model when scarce training data is available. To
solve this problem, we design an image classification network that incorporates
saliency information as input. This network processes the saliency map through a
dedicated network branch and uses the resulting characteristics to modulate the
standard bottom-up visual characteristics of the original image input. We will refer to this technique as saliency-modulated image classification (SMIC). In extensive
experiments on standard benchmark datasets for fine-grained object recognition,
we show that our proposed architecture can significantly improve performance,
especially on dataset with scarce training data.
Next, we address the main drawback of the above pipeline: SMIC requires an
explicit saliency algorithm that must be trained on a saliency dataset. To solve this,
we implement a hallucination mechanism that allows us to incorporate the saliency
estimation branch in an end-to-end trained neural network architecture that only
needs the RGB image as an input. A side-effect of this architecture is the estimation
of saliency maps. In experiments, we show that this architecture can obtain similar
results on object recognition as SMIC but without the requirement of ground truth
saliency maps to train the system.
Finally, we evaluated the accuracy of the saliency maps that occur as a sideeffect of object recognition. For this purpose, we use a set of benchmark datasets
for saliency evaluation based on eye-tracking experiments. Surprisingly, the estimated saliency maps are very similar to the maps that are computed from human
eye-tracking experiments. Our results show that these saliency maps can obtain
competitive results on benchmark saliency maps. On one synthetic saliency dataset
this method even obtains the state-of-the-art without the need of ever having seen
an actual saliency image for training.
Address March 2021
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-4-7 Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ Fig2021 Serial 3600
Permanent link to this record
 

 
Author Diego Porres
Title Discriminator Synthesis: On reusing the other half of Generative Adversarial Networks Type Conference Article
Year (up) 2021 Publication Machine Learning for Creativity and Design, Neurips Workshop Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Generative Adversarial Networks have long since revolutionized the world of computer vision and, tied to it, the world of art. Arduous efforts have gone into fully utilizing and stabilizing training so that outputs of the Generator network have the highest possible fidelity, but little has gone into using the Discriminator after training is complete. In this work, we propose to use the latter and show a way to use the features it has learned from the training dataset to both alter an image and generate one from scratch. We name this method Discriminator Dreaming, and the full code can be found at this https URL.
Address Virtual; December 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference NEURIPSW
Notes ADAS; 601.365 Approved no
Call Number Admin @ si @ Por2021 Serial 3597
Permanent link to this record
 

 
Author Gabriel Villalonga
Title Leveraging Synthetic Data to Create Autonomous Driving Perception Systems Type Book Whole
Year (up) 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Manually annotating images to develop vision models has been a major bottleneck
since computer vision and machine learning started to walk together. This has
been more evident since computer vision falls on the shoulders of data-hungry
deep learning techniques. When addressing on-board perception for autonomous
driving, the curse of data annotation is exacerbated due to the use of additional
sensors such as LiDAR. Therefore, any approach aiming at reducing such a timeconsuming and costly work is of high interest for addressing autonomous driving
and, in fact, for any application requiring some sort of artificial perception. In the
last decade, it has been shown that leveraging from synthetic data is a paradigm
worth to pursue in order to minimizing manual data annotation. The reason is
that the automatic process of generating synthetic data can also produce different
types of associated annotations (e.g. object bounding boxes for synthetic images
and LiDAR pointclouds, pixel/point-wise semantic information, etc.). Directly
using synthetic data for training deep perception models may not be the definitive
solution in all circumstances since it can appear a synth-to-real domain shift. In
this context, this work focuses on leveraging synthetic data to alleviate manual
annotation for three perception tasks related to driving assistance and autonomous
driving. In all cases, we assume the use of deep convolutional neural networks
(CNNs) to develop our perception models.
The first task addresses traffic sign recognition (TSR), a kind of multi-class
classification problem. We assume that the number of sign classes to be recognized
must be suddenly increased without having annotated samples to perform the
corresponding TSR CNN re-training. We show that leveraging synthetic samples of
such new classes and transforming them by a generative adversarial network (GAN)
trained on the known classes (i.e. without using samples from the new classes), it is
possible to re-train the TSR CNN to properly classify all the signs for a ∼ 1/4 ratio of
new/known sign classes. The second task addresses on-board 2D object detection,
focusing on vehicles and pedestrians. In this case, we assume that we receive a set
of images without the annotations required to train an object detector, i.e. without
object bounding boxes. Therefore, our goal is to self-annotate these images so
that they can later be used to train the desired object detector. In order to reach
this goal, we leverage from synthetic data and propose a semi-supervised learning
approach based on the co-training idea. In fact, we use a GAN to reduce the synthto-real domain shift before applying co-training. Our quantitative results show
that co-training and GAN-based image-to-image translation complement each
other up to allow the training of object detectors without manual annotation, and still almost reaching the upper-bound performances of the detectors trained from
human annotations. While in previous tasks we focus on vision-based perception,
the third task we address focuses on LiDAR pointclouds. Our initial goal was to
develop a 3D object detector trained on synthetic LiDAR-style pointclouds. While
for images we may expect synth/real-to-real domain shift due to differences in
their appearance (e.g. when source and target images come from different camera
sensors), we did not expect so for LiDAR pointclouds since these active sensors
factor out appearance and provide sampled shapes. However, in practice, we have
seen that it can be domain shift even among real-world LiDAR pointclouds. Factors
such as the sampling parameters of the LiDARs, the sensor suite configuration onboard the ego-vehicle, and the human annotation of 3D bounding boxes, do induce
a domain shift. We show it through comprehensive experiments with different
publicly available datasets and 3D detectors. This redirected our goal towards the
design of a GAN for pointcloud-to-pointcloud translation, a relatively unexplored
topic.
Finally, it is worth to mention that all the synthetic datasets used for these three
tasks, have been designed and generated in the context of this PhD work and will
be publicly released. Overall, we think this PhD presents several steps forward to
encourage leveraging synthetic data for developing deep perception models in the
field of driving assistance and autonomous driving.
Address February 2021
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;German Ros
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-2-3 Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ Vil2021 Serial 3599
Permanent link to this record
 

 
Author Andres Mafla; Sounak Dey; Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas
Title Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval Type Conference Article
Year (up) 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 4022-4032
Keywords
Abstract
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ MDB2021 Serial 3491
Permanent link to this record
 

 
Author Andres Mafla; Rafael S. Rezende; Lluis Gomez; Diana Larlus; Dimosthenis Karatzas
Title StacMR: Scene-Text Aware Cross-Modal Retrieval Type Conference Article
Year (up) 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 2219-2229
Keywords
Abstract
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ MRG2021a Serial 3492
Permanent link to this record
 

 
Author Andres Mafla; Ruben Tito; Sounak Dey; Lluis Gomez; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas
Title Real-time Lexicon-free Scene Text Retrieval Type Journal Article
Year (up) 2021 Publication Pattern Recognition Abbreviated Journal PR
Volume 110 Issue Pages 107656
Keywords
Abstract In this work, we address the task of scene text retrieval: given a text query, the system returns all images containing the queried text. The proposed model uses a single shot CNN architecture that predicts bounding boxes and builds a compact representation of spotted words. In this way, this problem can be modeled as a nearest neighbor search of the textual representation of a query over the outputs of the CNN collected from the totality of an image database. Our experiments demonstrate that the proposed model outperforms previous state-of-the-art, while offering a significant increase in processing speed and unmatched expressiveness with samples never seen at training time. Several experiments to assess the generalization capability of the model are conducted in a multilingual dataset, as well as an application of real-time text spotting in videos.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.129; 601.338 Approved no
Call Number Admin @ si @ MTD2021 Serial 3493
Permanent link to this record
 

 
Author Minesh Mathew; Dimosthenis Karatzas; C.V. Jawahar
Title DocVQA: A Dataset for VQA on Document Images Type Conference Article
Year (up) 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 2200-2209
Keywords
Abstract We present a new dataset for Visual Question Answering (VQA) on document images called DocVQA. The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension is presented. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial. The dataset, code and leaderboard are available at docvqa. org
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ MKJ2021 Serial 3498
Permanent link to this record
 

 
Author Gemma Rotger
Title Lifelike Humans: Detailed Reconstruction of Expressive Human Faces Type Book Whole
Year (up) 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Developing human-like digital characters is a challenging task since humans are used to recognizing our fellows, and find the computed generated characters inadequately humanized. To fulfill the standards of the videogame and digital film productions it is necessary to model and animate these characters the most closely to human beings. However, it is an arduous and expensive task, since many artists and specialists are required to work on a single character. Therefore, to fulfill these requirements we found an interesting option to study the automatic creation of detailed characters through inexpensive setups. In this work, we develop novel techniques to bring detailed characters by combining different aspects that stand out when developing realistic characters, skin detail, facial hairs, expressions, and microexpressions. We examine each of the mentioned areas with the aim of automatically recover each of the parts without user interaction nor training data. We study the problems for their robustness but also for the simplicity of the setup, preferring single-image with uncontrolled illumination and methods that can be easily computed with the commodity of a standard laptop. A detailed face with wrinkles and skin details is vital to develop a realistic character. In this work, we introduce our method to automatically describe facial wrinkles on the image and transfer to the recovered base face. Then we advance to facial hair recovery by resolving a fitting problem with a novel parametrization model. As of last, we develop a mapping function that allows transfer expressions and microexpressions between different meshes, which provides realistic animations to our detailed mesh. We cover all the mentioned points with the focus on key aspects as (i) how to describe skin wrinkles in a simple and straightforward manner, (ii) how to recover 3D from 2D detections, (iii) how to recover and model facial hair from 2D to 3D, (iv) how to transfer expressions between models holding both skin detail and facial hair, (v) how to perform all the described actions without training data nor user interaction. In this work, we present our proposals to solve these aspects with an efficient and simple setup. We validate our work with several datasets both synthetic and real data, prooving remarkable results even in challenging cases as occlusions as glasses, thick beards, and indeed working with different face topologies like single-eyed cyclops.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Felipe Lumbreras;Antonio Agudo
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-3-0 Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Rot2021 Serial 3513
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera
Title Sign Language Recognition: A Deep Survey Type Journal Article
Year (up) 2021 Publication Expert Systems With Applications Abbreviated Journal ESWA
Volume 164 Issue Pages 113794
Keywords
Abstract Sign language, as a different form of the communication language, is important to large groups of people in society. There are different signs in each sign language with variability in hand shape, motion profile, and position of the hand, face, and body parts contributing to each sign. So, visual sign language recognition is a complex research area in computer vision. Many models have been proposed by different researchers with significant improvement by deep learning approaches in recent years. In this survey, we review the vision-based proposed models of sign language recognition using deep learning approaches from the last five years. While the overall trend of the proposed models indicates a significant improvement in recognition accuracy in sign language recognition, there are some challenges yet that need to be solved. We present a taxonomy to categorize the proposed models for isolated and continuous sign language recognition, discussing applications, datasets, hybrid models, complexity, and future lines of research in the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ RKE2021a Serial 3521
Permanent link to this record
 

 
Author Giuseppe Pezzano; Vicent Ribas Ripoll; Petia Radeva
Title CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation Type Journal Article
Year (up) 2021 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB
Volume 198 Issue Pages 105792
Keywords
Abstract Background and objective:An accurate segmentation of lung nodules in computed tomography images is a crucial step for the physical characterization of the tumour. Being often completely manually accomplished, nodule segmentation turns to be a tedious and time-consuming procedure and this represents a high obstacle in clinical practice. In this paper, we propose a novel Convolutional Neural Network for nodule segmentation that combines a light and efficient architecture with innovative loss function and segmentation strategy. Methods:In contrast to most of the standard end-to-end architectures for nodule segmentation, our network learns the context of the nodules by producing two masks representing all the background and secondary-important elements in the Computed Tomography scan. The nodule is detected by subtracting the context from the original scan image. Additionally, we introduce an asymmetric loss function that automatically compensates for potential errors in the nodule annotations. We trained and tested our Neural Network on the public LIDC-IDRI database, compared it with the state of the art and run a pseudo-Turing test between four radiologists and the network. Results:The results proved that the behaviour of the algorithm is very near to the human performance and its segmentation masks are almost indistinguishable from the ones made by the radiologists. Our method clearly outperforms the state of the art on CT nodule segmentation in terms of F1 score and IoU of and respectively. Conclusions: The main structure of the network ensures all the properties of the UNet architecture, while the Multi Convolutional Layers give a more accurate pattern recognition. The newly adopted solutions also increase the details on the border of the nodule, even under the noisiest conditions. This method can be applied now for single CT slice nodule segmentation and it represents a starting point for the future development of a fully automatic 3D segmentation software.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ PRR2021 Serial 3530
Permanent link to this record
 

 
Author Cristina Palmero; Javier Selva; Sorina Smeureanu; Julio C. S. Jacques Junior; Albert Clapes; Alexa Mosegui; Zejian Zhang; David Gallardo; Georgina Guilera; David Leiva; Sergio Escalera
Title Context-Aware Personality Inference in Dyadic Scenarios: Introducing the UDIVA Dataset Type Conference Article
Year (up) 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 1-12
Keywords
Abstract This paper introduces UDIVA, a new non-acted dataset of face-to-face dyadic interactions, where interlocutors perform competitive and collaborative tasks with different behavior elicitation and cognitive workload. The dataset consists of 90.5 hours of dyadic interactions among 147 participants distributed in 188 sessions, recorded using multiple audiovisual and physiological sensors. Currently, it includes sociodemographic, self- and peer-reported personality, internal state, and relationship profiling from participants. As an initial analysis on UDIVA, we propose a
transformer-based method for self-reported personality inference in dyadic scenarios, which uses audiovisual data and different sources of context from both interlocutors to
regress a target person’s personality traits. Preliminary results from an incremental study show consistent improvements when using all available context information.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes HUPBA Approved no
Call Number Admin @ si @ PSS2021 Serial 3532
Permanent link to this record
 

 
Author Julio C. S. Jacques Junior; Agata Lapedriza; Cristina Palmero; Xavier Baro; Sergio Escalera
Title Person Perception Biases Exposed: Revisiting the First Impressions Dataset Type Conference Article
Year (up) 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 13-21
Keywords
Abstract This work revisits the ChaLearn First Impressions database, annotated for personality perception using pairwise comparisons via crowdsourcing. We analyse for the first time the original pairwise annotations, and reveal existing person perception biases associated to perceived attributes like gender, ethnicity, age and face attractiveness.
We show how person perception bias can influence data labelling of a subjective task, which has received little attention from the computer vision and machine learning communities by now. We further show that the mechanism used to convert pairwise annotations to continuous values may magnify the biases if no special treatment is considered. The findings of this study are relevant for the computer vision community that is still creating new datasets on subjective tasks, and using them for practical applications, ignoring these perceptual biases.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes HUPBA Approved no
Call Number Admin @ si @ JLP2021 Serial 3533
Permanent link to this record
 

 
Author Carola Figueroa Flores; Bogdan Raducanu; David Berga; Joost Van de Weijer
Title Hallucinating Saliency Maps for Fine-Grained Image Classification for Limited Data Domains Type Conference Article
Year (up) 2021 Publication 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal
Volume 4 Issue Pages 163-171
Keywords
Abstract arXiv:2007.12562
Most of the saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline, like for instance, image classification. In the current paper, we propose an approach which does not require explicit saliency maps to improve image classification, but they are learned implicitely, during the training of an end-to-end image classification task. We show that our approach obtains similar results as the case when the saliency maps are provided explicitely. Combining RGB data with saliency maps represents a significant advantage for object recognition, especially for the case when training data is limited. We validate our method on several datasets for fine-grained classification tasks (Flowers, Birds and Cars). In addition, we show that our saliency estimation method, which is trained without any saliency groundtruth data, obtains competitive results on real image saliency benchmark (Toronto), and outperforms deep saliency models with synthetic images (SID4VAM).
Address Virtual; February 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISAPP
Notes LAMP Approved no
Call Number Admin @ si @ FRB2021c Serial 3540
Permanent link to this record