Hector Laria Mantecon, Kai Wang, Joost Van de Weijer, Bogdan Raducanu, & Kai Wang. (2024). NeRF-Diffusion for 3D-Consistent Face Generation and Editing. In 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Abstract: Generating high-fidelity 3D-aware images without 3D supervision is a valuable capability in various applications. Current methods based on NeRF features, SDF information, or triplane features have limited variation after training. To address this, we propose a novel approach that combines pretrained models for shape and content generation. Our method leverages a pretrained Neural Radiance Field as a shape prior and a diffusion model for content generation. By conditioning the diffusion model with 3D features, we enhance its ability to generate novel views with 3D awareness. We introduce a consistency token shared between the NeRF module and the diffusion model to maintain 3D consistency during sampling. Moreover, our framework allows for text editing of 3D-aware image generation, enabling users to modify the style over 3D views while preserving semantic content. Our contributions include incorporating 3D awareness into a text-to-image model, addressing identity consistency in 3D view synthesis, and enabling text editing of 3D-aware image generation. We provide detailed explanations, including the shape prior based on the NeRF model and the content generation process using the diffusion model. We also discuss challenges such as shape consistency and sampling saturation. Experimental results demonstrate the effectiveness and visual quality of our approach.
|
Marcos V Conde, Javier Vazquez, Michael S Brown, & Radu TImofte. (2024). NILUT: Conditional Neural Implicit 3D Lookup Tables for Image Enhancement. In 38th AAAI Conference on Artificial Intelligence.
Abstract: 3D lookup tables (3D LUTs) are a key component for image enhancement. Modern image signal processors (ISPs) have dedicated support for these as part of the camera rendering pipeline. Cameras typically provide multiple options for picture styles, where each style is usually obtained by applying a unique handcrafted 3D LUT. Current approaches for learning and applying 3D LUTs are notably fast, yet not so memory-efficient, as storing multiple 3D LUTs is required. For this reason and other implementation limitations, their use on mobile devices is less popular. In this work, we propose a Neural Implicit LUT (NILUT), an implicitly defined continuous 3D color transformation parameterized by a neural network. We show that NILUTs are capable of accurately emulating real 3D LUTs. Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly. Our novel approach is memory-efficient, controllable and can complement previous methods, including learned ISPs.
|
Yaxing Wang, Abel Gonzalez-Garcia, Chenshen Wu, Luis Herranz, Fahad Shahbaz Khan, Shangling Jui, et al. (2024). MineGAN++: Mining Generative Models for Efficient Knowledge Transfer to Limited Data Domains. IJCV - International Journal of Computer Vision, 132, 490–514.
Abstract: Given the often enormous effort required to train GANs, both computationally as well as in dataset collection, the re-use of pretrained GANs largely increases the potential impact of generative models. Therefore, we propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods, such as mode collapse and lack of flexibility. Furthermore, to prevent overfitting on small target domains, we introduce sparse subnetwork selection, that restricts the set of trainable neurons to those that are relevant for the target dataset. We perform comprehensive experiments on several challenging datasets using various GAN architectures (BigGAN, Progressive GAN, and StyleGAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs. MineGAN.
|
Justine Giroux, Mohammad Reza Karimi Dastjerdi, Yannick Hold-Geoffroy, Javier Vazquez, & Jean François Lalonde. (2024). Towards a Perceptual Evaluation Framework for Lighting Estimation. In Arxiv.
Abstract: rogress in lighting estimation is tracked by computing existing image quality assessment (IQA) metrics on images from standard datasets. While this may appear to be a reasonable approach, we demonstrate that doing so does not correlate to human preference when the estimated lighting is used to relight a virtual scene into a real photograph. To study this, we design a controlled psychophysical experiment where human observers must choose their preference amongst rendered scenes lit using a set of lighting estimation algorithms selected from the recent literature, and use it to analyse how these algorithms perform according to human perception. Then, we demonstrate that none of the most popular IQA metrics from the literature, taken individually, correctly represent human perception. Finally, we show that by learning a combination of existing IQA metrics, we can more accurately represent human preference. This provides a new perceptual framework to help evaluate future lighting estimation algorithms.
|
Mohamed Ramzy Ibrahim, Robert Benavente, Daniel Ponsa, & Felipe Lumbreras. (2024). SWViT-RRDB: Shifted Window Vision Transformer Integrating Residual in Residual Dense Block for Remote Sensing Super-Resolution. In 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Abstract: Remote sensing applications, impacted by acquisition season and sensor variety, require high-resolution images. Transformer-based models improve satellite image super-resolution but are less effective than convolutional neural networks (CNNs) at extracting local details, crucial for image clarity. This paper introduces SWViT-RRDB, a new deep learning model for satellite imagery super-resolution. The SWViT-RRDB, combining transformer with convolution and attention blocks, overcomes the limitations of existing models by better representing small objects in satellite images. In this model, a pipeline of residual fusion group (RFG) blocks is used to combine the multi-headed self-attention (MSA) with residual in residual dense block (RRDB). This combines global and local image data for better super-resolution. Additionally, an overlapping cross-attention block (OCAB) is used to enhance fusion and allow interaction between neighboring pixels to maintain long-range pixel dependencies across the image. The SWViT-RRDB model and its larger variants outperform state-of-the-art (SoTA) models on two different satellite datasets in terms of PSNR and SSIM.
|
Vacit Oguz Yazici, Longlong Yu, Arnau Ramisa, Luis Herranz, & Joost Van de Weijer. (2024). Main product detection with graph networks for fashion. MTAP - Multimedia Tools and Applications, 83, 3215–3231.
Abstract: Computer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused on identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper, we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.
|
Javier Vazquez, Graham D. Finlayson, & Luis Herranz. (2024). Improving the perception of low-light enhanced images. Optics Express, 32(4), 5174–5190.
Abstract: Improving images captured under low-light conditions has become an important topic in computational color imaging, as it has a wide range of applications. Most current methods are either based on handcrafted features or on end-to-end training of deep neural networks that mostly focus on minimizing some distortion metric —such as PSNR or SSIM— on a set of training images. However, the minimization of distortion metrics does not mean that the results are optimal in terms of perception (i.e. perceptual quality). As an example, the perception-distortion trade-off states that, close to the optimal results, improving distortion results in worsening perception. This means that current low-light image enhancement methods —that focus on distortion minimization— cannot be optimal in the sense of obtaining a good image in terms of perception errors. In this paper, we propose a post-processing approach in which, given the original low-light image and the result of a specific method, we are able to obtain a result that resembles as much as possible that of the original method, but, at the same time, giving an improvement in the perception of the final image. More in detail, our method follows the hypothesis that in order to minimally modify the perception of an input image, any modification should be a combination of a local change in the shading across a scene and a global change in illumination color. We demonstrate the ability of our method quantitatively using perceptual blind image metrics such as BRISQUE, NIQE, or UNIQUE, and through user preference tests.
|
Simone Zini, Alex Gomez-Villa, Marco Buzzelli, Bartlomiej Twardowski, Andrew D. Bagdanov, & Joost Van de Weijer. (2023). Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training. In 11th International Conference on Learning Representations.
Abstract: Several recent works on self-supervised learning are trained by mapping different augmentations of the same image to the same feature representation. The data augmentations used are of crucial importance to the quality of learned feature representations. In this paper, we analyze how the color jitter traditionally used in data augmentation negatively impacts the quality of the color features in learned feature representations. To address this problem, we propose a more realistic, physics-based color data augmentation – which we call Planckian Jitter – that creates realistic variations in chromaticity and produces a model robust to illumination changes that can be commonly observed in real life, while maintaining the ability to discriminate image content based on color information. Experiments confirm that such a representation is complementary to the representations learned with the currently-used color jitter augmentation and that a simple concatenation leads to significant performance gains on a wide range of downstream datasets. In addition, we present a color sensitivity analysis that documents the impact of different training methods on model neurons and shows that the performance of the learned features is robust with respect to illuminant variations.
|
Eduardo Aguilar, Bogdan Raducanu, Petia Radeva, & Joost Van de Weijer. (2023). Continual Evidential Deep Learning for Out-of-Distribution Detection. In IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop (pp. 3444–3454).
Abstract: Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.
|
Akshita Gupta, Sanath Narayan, Salman Khan, Fahad Shahbaz Khan, Ling Shao, & Joost Van de Weijer. (2023). Generative Multi-Label Zero-Shot Learning. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12), 14611–14624.
Abstract: Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.
Keywords: Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis
|
JW Xiao, CB Zhang, J. Feng, Xialei Liu, Joost Van de Weijer, & MM Cheng. (2023). Endpoints Weight Fusion for Class Incremental Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7204–7213).
Abstract: Class incremental semantic segmentation (CISS) focuses on alleviating catastrophic forgetting to improve discrimination. Previous work mainly exploit regularization (e.g., knowledge distillation) to maintain previous knowledge in the current model. However, distillation alone often yields limited gain to the model since only the representations of old and new models are restricted to be consistent. In this paper, we propose a simple yet effective method to obtain a model with strong memory of old knowledge, named Endpoints Weight Fusion (EWF). In our method, the model containing old knowledge is fused with the model retaining new knowledge in a dynamic fusion manner, strengthening the memory of old classes in ever-changing distributions. In addition, we analyze the relation between our fusion strategy and a popular moving average technique EMA, which reveals why our method is more suitable for class-incremental learning. To facilitate parameter fusion with closer distance in the parameter space, we use distillation to enhance the optimization process. Furthermore, we conduct experiments on two widely used datasets, achieving the state-of-the-art performance.
|
Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, Davide Bacciu, & Joost Van de Weijer. (2023). Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning.
Abstract: Distributed learning on the edge often comprises self-centered devices (SCD) which learn local tasks independently and are unwilling to contribute to the performance of other SDCs. How do we achieve forward transfer at zero cost for the single SCDs? We formalize this problem as a Distributed Continual Learning scenario, where SCD adapt to local tasks and a CL model consolidates the knowledge from the resulting stream of models without looking at the SCD's private data. Unfortunately, current CL methods are not directly applicable to this scenario. We propose Data-Agnostic Consolidation (DAC), a novel double knowledge distillation method that consolidates the stream of SC models without using the original data. DAC performs distillation in the latent space via a novel Projected Latent Distillation loss. Experimental results show that DAC enables forward transfer between SCDs and reaches state-of-the-art accuracy on Split CIFAR100, CORe50 and Split TinyImageNet, both in reharsal-free and distributed CL scenarios. Somewhat surprisingly, even a single out-of-distribution image is sufficient as the only source of data during consolidation.
|
Shiqi Yang, Yaxing Wang, Luis Herranz, Shangling Jui, & Joost Van de Weijer. (2023). Casting a BAIT for offline and online source-free domain adaptation. CVIU - Computer Vision and Image Understanding, 234, 103747.
Abstract: We address the source-free domain adaptation (SFDA) problem, where only the source model is available during adaptation to the target domain. We consider two settings: the offline setting where all target data can be visited multiple times (epochs) to arrive at a prediction for each target sample, and the online setting where the target data needs to be directly classified upon arrival. Inspired by diverse classifier based domain adaptation methods, in this paper we introduce a second classifier, but with another classifier head fixed. When adapting to the target domain, the additional classifier initialized from source classifier is expected to find misclassified features. Next, when updating the feature extractor, those features will be pushed towards the right side of the source decision boundary, thus achieving source-free domain adaptation. Experimental results show that the proposed method achieves competitive results for offline SFDA on several benchmark datasets compared with existing DA and SFDA methods, and our method surpasses by a large margin other SFDA methods under online source-free domain adaptation setting.
|
Danna Xue, Javier Vazquez, Luis Herranz, Yang Zhang, & Michael S Brown. (2023). Integrating High-Level Features for Consistent Palette-based Multi-image Recoloring. CGF - Computer Graphics Forum, .
Abstract: Achieving visually consistent colors across multiple images is important when images are used in photo albums, websites, and brochures. Unfortunately, only a handful of methods address multi-image color consistency compared to one-to-one color transfer techniques. Furthermore, existing methods do not incorporate high-level features that can assist graphic designers in their work. To address these limitations, we introduce a framework that builds upon a previous palette-based color consistency method and incorporates three high-level features: white balance, saliency, and color naming. We show how these features overcome the limitations of the prior multi-consistency workflow and showcase the user-friendly nature of our framework.
|
Olivier Penacchio, Xavier Otazu, Arnold J Wilkings, & Sara M. Haigh. (2023). A mechanistic account of visual discomfort. FN - Frontiers in Neuroscience, 17.
Abstract: Much of the neural machinery of the early visual cortex, from the extraction of local orientations to contextual modulations through lateral interactions, is thought to have developed to provide a sparse encoding of contour in natural scenes, allowing the brain to process efficiently most of the visual scenes we are exposed to. Certain visual stimuli, however, cause visual stress, a set of adverse effects ranging from simple discomfort to migraine attacks, and epileptic seizures in the extreme, all phenomena linked with an excessive metabolic demand. The theory of efficient coding suggests a link between excessive metabolic demand and images that deviate from natural statistics. Yet, the mechanisms linking energy demand and image spatial content in discomfort remain elusive. Here, we used theories of visual coding that link image spatial structure and brain activation to characterize the response to images observers reported as uncomfortable in a biologically based neurodynamic model of the early visual cortex that included excitatory and inhibitory layers to implement contextual influences. We found three clear markers of aversive images: a larger overall activation in the model, a less sparse response, and a more unbalanced distribution of activity across spatial orientations. When the ratio of excitation over inhibition was increased in the model, a phenomenon hypothesised to underlie interindividual differences in susceptibility to visual discomfort, the three markers of discomfort progressively shifted toward values typical of the response to uncomfortable stimuli. Overall, these findings propose a unifying mechanistic explanation for why there are differences between images and between observers, suggesting how visual input and idiosyncratic hyperexcitability give rise to abnormal brain responses that result in visual stress.
|
Shiqi Yang, Yaxing Wang, Joost Van de Weijer, Luis Herranz, Shangling Jui, & Jian Yang. (2023). Trust Your Good Friends: Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12), 15883–15895.
Abstract: Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets.
|
Jaykishan Patel, Alban Flachot, Javier Vazquez, David H. Brainard, Thomas S. A. Wallis, Marcus A. Brubaker, et al. (2023). A deep convolutional neural network trained to infer surface reflectance is deceived by mid-level lightness illusions. JV - Journal of Vision, 23(9), 4817.
Abstract: A long-standing view is that lightness illusions are by-products of strategies employed by the visual system to stabilize its perceptual representation of surface reflectance against changes in illumination. Computationally, one such strategy is to infer reflectance from the retinal image, and to base the lightness percept on this inference. CNNs trained to infer reflectance from images have proven successful at solving this problem under limited conditions. To evaluate whether these CNNs provide suitable starting points for computational models of human lightness perception, we tested a state-of-the-art CNN on several lightness illusions, and compared its behaviour to prior measurements of human performance. We trained a CNN (Yu & Smith, 2019) to infer reflectance from luminance images. The network had a 30-layer hourglass architecture with skip connections. We trained the network via supervised learning on 100K images, rendered in Blender, each showing randomly placed geometric objects (surfaces, cubes, tori, etc.), with random Lambertian reflectance patterns (solid, Voronoi, or low-pass noise), under randomized point+ambient lighting. The renderer also provided the ground-truth reflectance images required for training. After training, we applied the network to several visual illusions. These included the argyle, Koffka-Adelson, snake, White’s, checkerboard assimilation, and simultaneous contrast illusions, along with their controls where appropriate. The CNN correctly predicted larger illusions in the argyle, Koffka-Adelson, and snake images than in their controls. It also correctly predicted an assimilation effect in White's illusion. It did not, however, account for the checkerboard assimilation or simultaneous contrast effects. These results are consistent with the view that at least some lightness phenomena are by-products of a rational approach to inferring stable representations of physical properties from intrinsically ambiguous retinal images. Furthermore, they suggest that CNN models may be a promising starting point for new models of human lightness perception.
|
Marcos V Conde, Florin Vasluianu, Javier Vazquez, & Radu Timofte. (2023). Perceptual image enhancement for smartphone real-time applications. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1848–1858).
Abstract: Recent advances in camera designs and imaging pipelines allow us to capture high-quality images using smartphones. However, due to the small size and lens limitations of the smartphone cameras, we commonly find artifacts or degradation in the processed images. The most common unpleasant effects are noise artifacts, diffraction artifacts, blur, and HDR overexposure. Deep learning methods for image restoration can successfully remove these artifacts. However, most approaches are not suitable for real-time applications on mobile devices due to their heavy computation and memory requirements. In this paper, we propose LPIENet, a lightweight network for perceptual image enhancement, with the focus on deploying it on smartphones. Our experiments show that, with much fewer parameters and operations, our model can deal with the mentioned artifacts and achieve competitive performance compared with state-of-the-art methods on standard benchmarks. Moreover, to prove the efficiency and reliability of our approach, we deployed the model directly on commercial smartphones and evaluated its performance. Our model can process 2K resolution images under 1 second in mid-level commercial smartphones.
|