Vacit Oguz Yazici, Longlong Yu, Arnau Ramisa, Luis Herranz, & Joost Van de Weijer. (2024). Main product detection with graph networks for fashion. MTAP - Multimedia Tools and Applications, 83, 3215–3231.
Abstract: Computer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused on identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper, we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.
|
Rahma Kalboussi, Aymen Azaza, Joost Van de Weijer, Mehrez Abdellaoui, & Ali Douik. (2020). Object proposals for salient object segmentation in videos. MTAP - Multimedia Tools and Applications, 79(13), 8677–8693.
Abstract: Salient object segmentation in videos is generally broken up in a video segmentation part and a saliency assignment part. Recently, object proposals, which are used to segment the image, have had significant impact on many computer vision applications, including image segmentation, object detection, and recently saliency detection in still images. However, their usage has not yet been evaluated for salient object segmentation in videos. Therefore, in this paper, we investigate the application of object proposals to salient object segmentation in videos. In addition, we propose a new motion feature derived from the optical flow structure tensor for video saliency detection. Experiments on two standard benchmark datasets for video saliency show that the proposed motion feature improves saliency estimation results, and that object proposals are an efficient method for salient object segmentation. Results on the challenging SegTrack v2 and Fukuchi benchmark data sets show that we significantly outperform the state-of-the-art.
|
Laura Lopez-Fuentes, Joost Van de Weijer, Manuel Gonzalez-Hidalgo, Harald Skinnemoen, & Andrew Bagdanov. (2018). Review on computer vision techniques in emergency situations. MTAP - Multimedia Tools and Applications, 77(13), 17069–17107.
Abstract: In emergency situations, actions that save lives and limit the impact of hazards are crucial. In order to act, situational awareness is needed to decide what to do. Geolocalized photos and video of the situations as they evolve can be crucial in better understanding them and making decisions faster. Cameras are almost everywhere these days, either in terms of smartphones, installed CCTV cameras, UAVs or others. However, this poses challenges in big data and information overflow. Moreover, most of the time there are no disasters at any given location, so humans aiming to detect sudden situations may not be as alert as needed at any point in time. Consequently, computer vision tools can be an excellent decision support. The number of emergencies where computer vision tools has been considered or used is very wide, and there is a great overlap across related emergency research. Researchers tend to focus on state-of-the-art systems that cover the same emergency as they are studying, obviating important research in other fields. In order to unveil this overlap, the survey is divided along four main axes: the types of emergencies that have been studied in computer vision, the objective that the algorithms can address, the type of hardware needed and the algorithms used. Therefore, this review provides a broad overview of the progress of computer vision covering all sorts of emergencies.
Keywords: Emergency management; Computer vision; Decision makers; Situational awareness; Critical situation
|
David Geronimo, Joan Serrat, Antonio Lopez, & Ramon Baldrich. (2013). Traffic sign recognition for computer vision project-based learning. T-EDUC - IEEE Transactions on Education, 56(3), 364–371.
Abstract: This paper presents a graduate course project on computer vision. The aim of the project is to detect and recognize traffic signs in video sequences recorded by an on-board vehicle camera. This is a demanding problem, given that traffic sign recognition is one of the most challenging problems for driving assistance systems. Equally, it is motivating for the students given that it is a real-life problem. Furthermore, it gives them the opportunity to appreciate the difficulty of real-world vision problems and to assess the extent to which this problem can be solved by modern computer vision and pattern classification techniques taught in the classroom. The learning objectives of the course are introduced, as are the constraints imposed on its design, such as the diversity of students' background and the amount of time they and their instructors dedicate to the course. The paper also describes the course contents, schedule, and how the project-based learning approach is applied. The outcomes of the course are discussed, including both the students' marks and their personal feedback.
Keywords: traffic signs
|
C. Alejandro Parraga, Robert Benavente, Maria Vanrell, & Ramon Baldrich. (2009). Psychophysical measurements to model inter-colour regions of colour-naming space. Journal of Imaging Science and Technology, 53(3), 031106 (8 pages).
Abstract: JCR Impact Factor 2009: 0.391
In this paper, we present a fuzzy-set of parametric functions which segment the CIE lab space into eleven regions which correspond to the group of common universal categories present in all evolved languages as identified by anthropologists and linguists. The set of functions is intended to model a color-name assignment task by humans and differs from other models in its emphasis on the inter-color boundary regions, which were explicitly measured by means of a psychophysics experiment. In our particular implementation, the CIE lab space was segmented into eleven color categories using a Triple Sigmoid as the fuzzy sets basis, whose parameters are included in this paper. The model’s parameters were adjusted according to the psychophysical results of a yes/no discrimination paradigm where observers had to choose (English) names for isoluminant colors belonging to regions in-between neighboring categories. These colors were presented on a calibrated CRT monitor (14-bit x 3 precision). The experimental results show that inter- color boundary regions are much less defined than expected and color samples other than those near the most representatives are needed to define the position and shape of boundaries between categories. The extended set of model parameters is given as a table.
Keywords: image processing; Analysis
|
Javier Vazquez, C. Alejandro Parraga, Maria Vanrell, & Ramon Baldrich. (2009). Color Constancy Algorithms: Psychophysical Evaluation on a New Dataset. Journal of Imaging Science and Technology, 53(3), 031105–9.
Abstract: The estimation of the illuminant of a scene from a digital image has been the goal of a large amount of research in computer vision. Color constancy algorithms have dealt with this problem by defining different heuristics to select a unique solution from within the feasible set. The performance of these algorithms has shown that there is still a long way to go to globally solve this problem as a preliminary step in computer vision. In general, performance evaluation has been done by comparing the angular error between the estimated chromaticity and the chromaticity of a canonical illuminant, which is highly dependent on the image dataset. Recently, some workers have used high-level constraints to estimate illuminants; in this case selection is based on increasing the performance on the subsequent steps of the systems. In this paper we propose a new performance measure, the perceptual angular error. It evaluates the performance of a color constancy algorithm according to the perceptual preferences of humans, or naturalness (instead of the actual optimal solution) and is independent of the visual task. We show the results of a new psychophysical experiment comparing solutions from three different color constancy algorithms. Our results show that in more than a half of the judgments the preferred solution is not the one closest to the optimal solution. Our experiments were performed on a new dataset of images acquired with a calibrated camera with an attached neutral grey sphere, which better copes with the illuminant variations of the scene.
|
Fahad Shahbaz Khan, Muhammad Anwer Rao, Joost Van de Weijer, Michael Felsberg, & J.Laaksonen. (2015). Compact color texture description for texture classification. PRL - Pattern Recognition Letters, 51, 16–22.
Abstract: Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
|
Xavier Otazu, Maria Vanrell, & C. Alejandro Parraga. (2008). Multiresolution Wavelet Framework Models Brightness Induction Effects. VR - Vision Research, 733–751.
|
Joost Van de Weijer, Fahad Shahbaz Khan, & Marc Masana. (2013). Interactive Visual and Semantic Image Retrieval. In Angel Sappa, & Jordi Vitria (Eds.), Multimodal Interaction in Image and Video Applications (Vol. 48, pp. 31–35). Springer Berlin Heidelberg.
Abstract: One direct consequence of recent advances in digital visual data generation and the direct availability of this information through the World-Wide Web, is a urgent demand for efficient image retrieval systems. The objective of image retrieval is to allow users to efficiently browse through this abundance of images. Due to the non-expert nature of the majority of the internet users, such systems should be user friendly, and therefore avoid complex user interfaces. In this chapter we investigate how high-level information provided by recently developed object recognition techniques can improve interactive image retrieval. Wel apply a bagof- word based image representation method to automatically classify images in a number of categories. These additional labels are then applied to improve the image retrieval system. Next to these high-level semantic labels, we also apply a low-level image description to describe the composition and color scheme of the scene. Both descriptions are incorporated in a user feedback image retrieval setting. The main objective is to show that automatic labeling of images with semantic labels can improve image retrieval results.
|
Abel Gonzalez-Garcia, Robert Benavente, Olivier Penacchio, Javier Vazquez, Maria Vanrell, & C. Alejandro Parraga. (2013). Coloresia: An Interactive Colour Perception Device for the Visually Impaired. In Multimodal Interaction in Image and Video Applications (Vol. 48, pp. 47–66). Springer Berlin Heidelberg.
Abstract: A significative percentage of the human population suffer from impairments in their capacity to distinguish or even see colours. For them, everyday tasks like navigating through a train or metro network map becomes demanding. We present a novel technique for extracting colour information from everyday natural stimuli and presenting it to visually impaired users as pleasant, non-invasive sound. This technique was implemented inside a Personal Digital Assistant (PDA) portable device. In this implementation, colour information is extracted from the input image and categorised according to how human observers segment the colour space. This information is subsequently converted into sound and sent to the user via speakers or headphones. In the original implementation, it is possible for the user to send its feedback to reconfigure the system, however several features such as these were not implemented because the current technology is limited.We are confident that the full implementation will be possible in the near future as PDA technology improves.
|
David Berga, Xavier Otazu, Xose R. Fernandez-Vidal, Victor Leboran, & Xose M. Pardo. (2019). Generating Synthetic Images for Visual Attention Modeling. PER - Perception, 48, 99.
|
Noha Elfiky, Fahad Shahbaz Khan, Joost Van de Weijer, & Jordi Gonzalez. (2012). Discriminative Compact Pyramids for Object and Scene Recognition. PR - Pattern Recognition, 45(4), 1627–1636.
Abstract: Spatial pyramids have been successfully applied to incorporating spatial information into bag-of-words based image representation. However, a major drawback is that it leads to high dimensional image representations. In this paper, we present a novel framework for obtaining compact pyramid representation. First, we investigate the usage of the divisive information theoretic feature clustering (DITC) algorithm in creating a compact pyramid representation. In many cases this method allows us to reduce the size of a high dimensional pyramid representation up to an order of magnitude with little or no loss in accuracy. Furthermore, comparison to clustering based on agglomerative information bottleneck (AIB) shows that our method obtains superior results at significantly lower computational costs. Moreover, we investigate the optimal combination of multiple features in the context of our compact pyramid representation. Finally, experiments show that the method can obtain state-of-the-art results on several challenging data sets.
|
Susana Alvarez, & Maria Vanrell. (2012). Texton theory revisited: a bag-of-words approach to combine textons. PR - Pattern Recognition, 45(12), 4312–4325.
Abstract: The aim of this paper is to revisit an old theory of texture perception and
update its computational implementation by extending it to colour. With this in mind we try to capture the optimality of perceptual systems. This is achieved in the proposed approach by sharing well-known early stages of the visual processes and extracting low-dimensional features that perfectly encode adequate properties for a large variety of textures without needing further learning stages. We propose several descriptors in a bag-of-words framework that are derived from different quantisation models on to the feature spaces. Our perceptual features are directly given by the shape and colour attributes of image blobs, which are the textons. In this way we avoid learning visual words and directly build the vocabularies on these lowdimensionaltexton spaces. Main differences between proposed descriptors rely on how co-occurrence of blob attributes is represented in the vocabularies. Our approach overcomes current state-of-art in colour texture description which is proved in several experiments on large texture datasets.
|
Akshita Gupta, Sanath Narayan, Salman Khan, Fahad Shahbaz Khan, Ling Shao, & Joost Van de Weijer. (2023). Generative Multi-Label Zero-Shot Learning. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12), 14611–14624.
Abstract: Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.
Keywords: Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis
|
Shiqi Yang, Yaxing Wang, Joost Van de Weijer, Luis Herranz, Shangling Jui, & Jian Yang. (2023). Trust Your Good Friends: Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12), 15883–15895.
Abstract: Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets.
|
Xim Cerda-Company, C. Alejandro Parraga, & Xavier Otazu. (2014). Which tone-mapping is the best? A comparative study of tone-mapping perceived quality. In Perception (Vol. 43, 106).
Abstract: Perception 43 ECVP Abstract Supplement
High-dynamic-range (HDR) imaging refers to the methods designed to increase the brightness dynamic range present in standard digital imaging techniques. This increase is achieved by taking the same picture under dierent exposure values and mapping the intensity levels into a single image by way of a tone-mapping operator (TMO). Currently, there is no agreement on how to evaluate the quality
of dierent TMOs. In this work we psychophysically evaluate 15 dierent TMOs obtaining rankings based on the perceived properties of the resulting tone-mapped images. We performed two dierent experiments on a CRT calibrated display using 10 subjects: (1) a study of the internal relationships between grey-levels and (2) a pairwise comparison of the resulting 15 tone-mapped images. In (1) observers internally matched the grey-levels to a reference inside the tone-mapped images and in the real scene. In (2) observers performed a pairwise comparison of the tone-mapped images alongside the real scene. We obtained two rankings of the TMOs according their performance. In (1) the best algorithm
was ICAM by J.Kuang et al (2007) and in (2) the best algorithm was a TMO by Krawczyk et al (2005). Our results also show no correlation between these two rankings.
|
Daniel Ponsa, Robert Benavente, Felipe Lumbreras, Judit Martinez, & Xavier Roca. (2003). Quality control of safety belts by machine vision inspection for real-time production. Optical Engineering (IF: 0.877), 42(4), 1114–1120.
|
Xavier Otazu. (2012). Perceptual tone-mapping operator based on multiresolution contrast decomposition. In Perception (Vol. 41, 86).
Abstract: Tone-mapping operators (TMO) are used to display high dynamic range(HDR) images in low dynamic range (LDR) displays. Many computational and biologically inspired approaches have been used in the literature, being many of them based on multiresolution decompositions. In this work, a simple two stage model for TMO is presented. The first stage is a novel multiresolution contrast decomposition, which is inspired in a pyramidal contrast decomposition (Peli, 1990 Journal of the Optical Society of America7(10), 2032-2040).
This novel multiresolution decomposition represents the Michelson contrast of the image at different spatial scales. This multiresolution contrast representation, applied on the intensity channel of an opponent colour decomposition, is processed by a non-linear saturating model of V1 neurons (Albrecht et al, 2002 Journal ofNeurophysiology 88(2) 888-913). This saturation model depends on the visual frequency, and it has been modified in order to include information from the extended Contrast Sensitivity Function (e-CSF) (Otazu et al, 2010 Journal ofVision10(12) 5).
A set of HDR images in Radiance RGBE format (from CIS HDR Photographic Survey and Greg Ward database) have been used to test the model, obtaining a set of LDR images. The resulting LDR images do not show the usual halo or color modification artifacts.
|