|   | 
Details
   web
Records
Author Marc Bolaños; Alvaro Peris; Francisco Casacuberta; Sergi Solera; Petia Radeva
Title Egocentric video description based on temporally-linked sequences Type Journal Article
Year 2018 Publication Journal of Visual Communication and Image Representation Abbreviated Journal JVCIR
Volume (up) 50 Issue Pages 205-216
Keywords egocentric vision; video description; deep learning; multi-modal learning
Abstract Egocentric vision consists in acquiring images along the day from a first person point-of-view using wearable cameras. The automatic analysis of this information allows to discover daily patterns for improving the quality of life of the user. A natural topic that arises in egocentric vision is storytelling, that is, how to understand and tell the story relying behind the pictures.
In this paper, we tackle storytelling as an egocentric sequences description problem. We propose a novel methodology that exploits information from temporally neighboring events, matching precisely the nature of egocentric sequences. Furthermore, we present a new method for multimodal data fusion consisting on a multi-input attention recurrent network. We also release the EDUB-SegDesc dataset. This is the first dataset for egocentric image sequences description, consisting of 1,339 events with 3,991 descriptions, from 55 days acquired by 11 people. Finally, we prove that our proposal outperforms classical attentional encoder-decoder methods for video description.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ BPC2018 Serial 3109
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen
Title Compact color texture description for texture classification Type Journal Article
Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume (up) 51 Issue Pages 16-22
Keywords
Abstract Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.068; 600.079;ADAS Approved no
Call Number Admin @ si @ KRW2015a Serial 2587
Permanent link to this record
 

 
Author Andres Traumann; Gholamreza Anbarjafari; Sergio Escalera
Title Accurate 3D Measurement Using Optical Depth Information Type Journal Article
Year 2015 Publication Electronic Letters Abbreviated Journal EL
Volume (up) 51 Issue 18 Pages 1420-1422
Keywords
Abstract A novel three-dimensional measurement technique is proposed. The methodology consists in mapping from the screen coordinates reported by the optical camera to the real world, and integrating distance gradients from the beginning to the end point, while also minimising the error through fitting pixel locations to a smooth curve. The results demonstrate accuracy of less than half a centimetre using Microsoft Kinect II.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ TAE2015 Serial 2647
Permanent link to this record
 

 
Author Cristina Sanchez Montes; F. Javier Sanchez; Jorge Bernal; Henry Cordova; Maria Lopez Ceron; Miriam Cuatrecasas; Cristina Rodriguez de Miguel; Ana Garcia Rodriguez; Rodrigo Garces Duran; Maria Pellise; Josep Llach; Gloria Fernandez Esparrach
Title Computer-aided Prediction of Polyp Histology on White-Light Colonoscopy using Surface Pattern Analysis Type Journal Article
Year 2019 Publication Endoscopy Abbreviated Journal END
Volume (up) 51 Issue 3 Pages 261-265
Keywords
Abstract Background and study aims: To evaluate a new computational histology prediction system based on colorectal polyp textural surface patterns using high definition white light images.
Patients and methods: Textural elements (textons) were characterized according to their contrast with respect to the surface, shape and number of bifurcations, assuming that dysplastic polyps are associated with highly contrasted, large tubular patterns with some degree of bifurcation. Computer-aided diagnosis (CAD) was compared with pathological diagnosis and the diagnosis by the endoscopists using Kudo and NICE classification.
Results: Images of 225 polyps were evaluated (142 dysplastic and 83 non-dysplastic). CAD system correctly classified 205 (91.1%) polyps, 131/142 (92.3%) dysplastic and 74/83 (89.2%) non-dysplastic. For the subgroup of 100 diminutive (<5 mm) polyps, CAD correctly classified 87 (87%) polyps, 43/50 (86%) dysplastic and 44/50 (88%) non-dysplastic. There were not statistically significant differences in polyp histology prediction based on CAD system and on endoscopist assessment.
Conclusion: A computer vision system based on the characterization of the polyp surface in the white light accurately predicts colorectal polyp histology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; 600.096; 600.119; 600.075 Approved no
Call Number Admin @ si @ SSB2019 Serial 3164
Permanent link to this record
 

 
Author Jun Wan; Chi Lin; Longyin Wen; Yunan Li; Qiguang Miao; Sergio Escalera; Gholamreza Anbarjafari; Isabelle Guyon; Guodong Guo; Stan Z. Li
Title ChaLearn Looking at People: IsoGD and ConGD Large-scale RGB-D Gesture Recognition Type Journal Article
Year 2022 Publication IEEE Transactions on Cybernetics Abbreviated Journal TCIBERN
Volume (up) 52 Issue 5 Pages 3422-3433
Keywords
Abstract The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on Pattern Recognition (ICPR) 2016 and International Conference on Computer Vision (ICCV) 2017, attracting more than 200 teams round the world. This challenge has two tracks, focusing on isolated and continuous gesture recognition, respectively. This paper describes the creation of both benchmark datasets and analyzes the advances in large-scale gesture recognition based on these two datasets. We discuss the challenges of collecting large-scale ground-truth annotations of gesture recognition, and provide a detailed analysis of the current state-of-the-art methods for large-scale isolated and continuous gesture recognition based on RGB-D video sequences. In addition to recognition rate and mean jaccard index (MJI) as evaluation metrics used in our previous challenges, we also introduce the corrected segmentation rate (CSR) metric to evaluate the performance of temporal segmentation for continuous gesture recognition. Furthermore, we propose a bidirectional long short-term memory (Bi-LSTM) baseline method, determining the video division points based on the skeleton points extracted by convolutional pose machine (CPM). Experiments demonstrate that the proposed Bi-LSTM outperforms the state-of-the-art methods with an absolute improvement of 8.1% (from 0.8917 to 0.9639) of CSR.
Address May 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ WLW2022 Serial 3522
Permanent link to this record
 

 
Author C. Alejandro Parraga; Robert Benavente; Maria Vanrell; Ramon Baldrich
Title Psychophysical measurements to model inter-colour regions of colour-naming space Type Journal Article
Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal
Volume (up) 53 Issue 3 Pages 031106 (8 pages)
Keywords image processing; Analysis
Abstract JCR Impact Factor 2009: 0.391
In this paper, we present a fuzzy-set of parametric functions which segment the CIE lab space into eleven regions which correspond to the group of common universal categories present in all evolved languages as identified by anthropologists and linguists. The set of functions is intended to model a color-name assignment task by humans and differs from other models in its emphasis on the inter-color boundary regions, which were explicitly measured by means of a psychophysics experiment. In our particular implementation, the CIE lab space was segmented into eleven color categories using a Triple Sigmoid as the fuzzy sets basis, whose parameters are included in this paper. The model’s parameters were adjusted according to the psychophysical results of a yes/no discrimination paradigm where observers had to choose (English) names for isoluminant colors belonging to regions in-between neighboring categories. These colors were presented on a calibrated CRT monitor (14-bit x 3 precision). The experimental results show that inter- color boundary regions are much less defined than expected and color samples other than those near the most representatives are needed to define the position and shape of boundaries between categories. The extended set of model parameters is given as a table.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ PBV2009 Serial 1157
Permanent link to this record
 

 
Author Javier Vazquez; C. Alejandro Parraga; Maria Vanrell; Ramon Baldrich
Title Color Constancy Algorithms: Psychophysical Evaluation on a New Dataset Type Journal Article
Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal
Volume (up) 53 Issue 3 Pages 031105–9
Keywords
Abstract The estimation of the illuminant of a scene from a digital image has been the goal of a large amount of research in computer vision. Color constancy algorithms have dealt with this problem by defining different heuristics to select a unique solution from within the feasible set. The performance of these algorithms has shown that there is still a long way to go to globally solve this problem as a preliminary step in computer vision. In general, performance evaluation has been done by comparing the angular error between the estimated chromaticity and the chromaticity of a canonical illuminant, which is highly dependent on the image dataset. Recently, some workers have used high-level constraints to estimate illuminants; in this case selection is based on increasing the performance on the subsequent steps of the systems. In this paper we propose a new performance measure, the perceptual angular error. It evaluates the performance of a color constancy algorithm according to the perceptual preferences of humans, or naturalness (instead of the actual optimal solution) and is independent of the visual task. We show the results of a new psychophysical experiment comparing solutions from three different color constancy algorithms. Our results show that in more than a half of the judgments the preferred solution is not the one closest to the optimal solution. Our experiments were performed on a new dataset of images acquired with a calibrated camera with an attached neutral grey sphere, which better copes with the illuminant variations of the scene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ VPV2009a Serial 1171
Permanent link to this record
 

 
Author O.F.Ahmad; Y.Mori; M.Misawa; S.Kudo; J.T.Anderson; Jorge Bernal
Title Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method Type Journal Article
Year 2021 Publication Endoscopy Abbreviated Journal END
Volume (up) 53 Issue 9 Pages 893-901
Keywords
Abstract BACKGROUND : Artificial intelligence (AI) research in colonoscopy is progressing rapidly but widespread clinical implementation is not yet a reality. We aimed to identify the top implementation research priorities. METHODS : An established modified Delphi approach for research priority setting was used. Fifteen international experts, including endoscopists and translational computer scientists/engineers, from nine countries participated in an online survey over 9 months. Questions related to AI implementation in colonoscopy were generated as a long-list in the first round, and then scored in two subsequent rounds to identify the top 10 research questions. RESULTS : The top 10 ranked questions were categorized into five themes. Theme 1: clinical trial design/end points (4 questions), related to optimum trial designs for polyp detection and characterization, determining the optimal end points for evaluation of AI, and demonstrating impact on interval cancer rates. Theme 2: technological developments (3 questions), including improving detection of more challenging and advanced lesions, reduction of false-positive rates, and minimizing latency. Theme 3: clinical adoption/integration (1 question), concerning the effective combination of detection and characterization into one workflow. Theme 4: data access/annotation (1 question), concerning more efficient or automated data annotation methods to reduce the burden on human experts. Theme 5: regulatory approval (1 question), related to making regulatory approval processes more efficient. CONCLUSIONS : This is the first reported international research priority setting exercise for AI in colonoscopy. The study findings should be used as a framework to guide future research with key stakeholders to accelerate the clinical implementation of AI in endoscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ AMM2021 Serial 3670
Permanent link to this record
 

 
Author Adriana Romero; Carlo Gatta; Gustavo Camps-Valls
Title Unsupervised Deep Feature Extraction for Remote Sensing Image Classification Type Journal Article
Year 2016 Publication IEEE Transaction on Geoscience and Remote Sensing Abbreviated Journal TGRS
Volume (up) 54 Issue 3 Pages 1349 - 1362
Keywords
Abstract This paper introduces the use of single-layer and deep convolutional networks for remote sensing data analysis. Direct application to multi- and hyperspectral imagery of supervised (shallow or deep) convolutional networks is very challenging given the high input data dimensionality and the relatively small amount of available labeled data. Therefore, we propose the use of greedy layerwise unsupervised pretraining coupled with a highly efficient algorithm for unsupervised learning of sparse features. The algorithm is rooted on sparse representations and enforces both population and lifetime sparsity of the extracted features, simultaneously. We successfully illustrate the expressive power of the extracted representations in several scenarios: classification of aerial scenes, as well as land-use classification in very high resolution or land-cover classification from multi- and hyperspectral images. The proposed algorithm clearly outperforms standard principal component analysis (PCA) and its kernel counterpart (kPCA), as well as current state-of-the-art algorithms of aerial classification, while being extremely computationally efficient at learning representations of data. Results show that single-layer convolutional networks can extract powerful discriminative features only when the receptive field accounts for neighboring pixels and are preferred when the classification requires high resolution and detailed results. However, deep architectures significantly outperform single-layer variants, capturing increasing levels of abstraction and complexity throughout the feature hierarchy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-2892 ISBN Medium
Area Expedition Conference
Notes LAMP; 600.079;MILAB Approved no
Call Number Admin @ si @ RGC2016 Serial 2723
Permanent link to this record
 

 
Author Ana Garcia Rodriguez; Yael Tudela; Henry Cordova; S. Carballal; I. Ordas; L. Moreira; E. Vaquero; O. Ortiz; L. Rivero; F. Javier Sanchez; Miriam Cuatrecasas; Maria Pellise; Jorge Bernal; Gloria Fernandez Esparrach
Title First in Vivo Computer-Aided Diagnosis of Colorectal Polyps using White Light Endoscopy Type Journal Article
Year 2022 Publication Endoscopy Abbreviated Journal END
Volume (up) 54 Issue Pages
Keywords
Abstract
Address 2022/04/14
Corporate Author Thesis
Publisher Georg Thieme Verlag KG Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ GTC2022a Serial 3746
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; J. Mauri; Petia Radeva
Title Intravascular Ultrasound Tissue Characterization with Sub-class Error-Correcting Output Codes Type Journal Article
Year 2009 Publication Journal of Signal Processing Systems Abbreviated Journal
Volume (up) 55 Issue 1-3 Pages 35–47
Keywords
Abstract Intravascular ultrasound (IVUS) represents a powerful imaging technique to explore coronary vessels and to study their morphology and histologic properties. In this paper, we characterize different tissues based on radial frequency, texture-based, and combined features. To deal with the classification of multiple tissues, we require the use of robust multi-class learning techniques. In this sense, error-correcting output codes (ECOC) show to robustly combine binary classifiers to solve multi-class problems. In this context, we propose a strategy to model multi-class classification tasks using sub-classes information in the ECOC framework. The new strategy splits the classes into different sub-sets according to the applied base classifier. Complex IVUS data sets containing overlapping data are learnt by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. The method automatically characterizes different tissues, showing performance improvements over the state-of-the-art ECOC techniques for different base classifiers. Furthermore, the combination of RF and texture-based features also shows improvements over the state-of-the-art approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1939-8018 ISBN Medium
Area Expedition Conference
Notes MILAB;HuPBA Approved no
Call Number BCNPCL @ bcnpcl @ EPM2009 Serial 1258
Permanent link to this record
 

 
Author Simone Balocco; O. Basset; G. Courbebaisse; E. Boni; Alejandro F. Frangi; P. Tortoli; C. Cachard
Title Estimation Of Viscoelastic Properties Of Vessel Walls Using a Computational Model and Doppler Ultrasound Type Journal Article
Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal PMB
Volume (up) 55 Issue 12 Pages 3557–3575
Keywords
Abstract Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number BCNPCL @ bcnpcl @ BBC2010 Serial 1312
Permanent link to this record
 

 
Author Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio
Title A computational framework for cancer response assessment based on oncological PET-CT scans Type Journal Article
Year 2014 Publication Computers in Biology and Medicine Abbreviated Journal CBM
Volume (up) 55 Issue Pages 92–99
Keywords Computer aided diagnosis; Nuclear medicine; Machine learning; Image processing; Quantitative analysis
Abstract In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ SED2014 Serial 2606
Permanent link to this record
 

 
Author Mariella Dimiccoli; Cathal Gurrin; David J. Crandall; Xavier Giro; Petia Radeva
Title Introduction to the special issue: Egocentric Vision and Lifelogging Type Journal Article
Year 2018 Publication Journal of Visual Communication and Image Representation Abbreviated Journal JVCIR
Volume (up) 55 Issue Pages 352-353
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ DGC2018 Serial 3187
Permanent link to this record
 

 
Author Bogdan Raducanu; D. Gatica-Perez
Title Inferring competitive role patterns in reality TV show through nonverbal analysis Type Journal Article
Year 2012 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume (up) 56 Issue 1 Pages 207-226
Keywords
Abstract This paper introduces a new facet of social media, namely that depicting social interaction. More concretely, we address this problem from the perspective of nonverbal behavior-based analysis of competitive meetings. For our study, we made use of “The Apprentice” reality TV show, which features a competition for a real, highly paid corporate job. Our analysis is centered around two tasks regarding a person's role in a meeting: predicting the person with the highest status, and predicting the fired candidates. We address this problem by adopting both supervised and unsupervised strategies. The current study was carried out using nonverbal audio cues. Our approach is based only on the nonverbal interaction dynamics during the meeting without relying on the spoken words. The analysis is based on two types of data: individual and relational measures. Results obtained from the analysis of a full season of the show are promising (up to 85.7% of accuracy in the first case and up to 92.8% in the second case). Our approach has been conveniently compared with the Influence Model, demonstrating its superiority.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1380-7501 ISBN Medium
Area Expedition Conference
Notes OR;MV Approved no
Call Number BCNPCL @ bcnpcl @ RaG2012 Serial 1360
Permanent link to this record