|   | 
Details
   web
Records
Author Fernando Vilariño; Panagiota Spyridonos; Fosca De Iorio; Jordi Vitria; Fernando Azpiroz; Petia Radeva
Title Intestinal Motility Assessment With Video Capsule Endoscopy: Automatic Annotation of Phasic Intestinal Contractions Type Journal Article
Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI
Volume (up) 29 Issue 2 Pages 246-259
Keywords
Abstract Intestinal motility assessment with video capsule endoscopy arises as a novel and challenging clinical fieldwork. This technique is based on the analysis of the patterns of intestinal contractions shown in a video provided by an ingestible capsule with a wireless micro-camera. The manual labeling of all the motility events requires large amount of time for offline screening in search of findings with low prevalence, which turns this procedure currently unpractical. In this paper, we propose a machine learning system to automatically detect the phasic intestinal contractions in video capsule endoscopy, driving a useful but not feasible clinical routine into a feasible clinical procedure. Our proposal is based on a sequential design which involves the analysis of textural, color, and blob features together with SVM classifiers. Our approach tackles the reduction of the imbalance rate of data and allows the inclusion of domain knowledge as new stages in the cascade. We present a detailed analysis, both in a quantitative and a qualitative way, by providing several measures of performance and the assessment study of interobserver variability. Our system performs at 70% of sensitivity for individual detection, whilst obtaining equivalent patterns to those of the experts for density of contractions.
Address
Corporate Author IEEE Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0278-0062 ISBN Medium
Area 800 Expedition Conference
Notes MILAB;MV;OR;SIAI Approved no
Call Number BCNPCL @ bcnpcl @ VSD2010; IAM @ iam @ VSI2010 Serial 1281
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Luis Badiella; Aura Hernandez-Sabate; Francesc Carreras; Sandra Pujades; Enric Marti
Title A Normalized Framework for the Design of Feature Spaces Assessing the Left Ventricular Function Type Journal Article
Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI
Volume (up) 29 Issue 3 Pages 733-745
Keywords
Abstract A through description of the left ventricle functionality requires combining complementary regional scores. A main limitation is the lack of multiparametric normality models oriented to the assessment of regional wall motion abnormalities (RWMA). This paper covers two main topics involved in RWMA assessment. We propose a general framework allowing the fusion and comparison across subjects of different regional scores. Our framework is used to explore which combination of regional scores (including 2-D motion and strains) is better suited for RWMA detection. Our statistical analysis indicates that for a proper (within interobserver variability) identification of RWMA, models should consider motion and extreme strains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0278-0062 ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ GGH2010b Serial 1507
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell
Title Spectral sharpening by spherical sampling Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A
Volume (up) 29 Issue 7 Pages 1199-1210
Keywords
Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1084-7529 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ FVS2012 Serial 2000
Permanent link to this record
 

 
Author Sophie Wuerger; Kaida Xiao; Dimitris Mylonas; Q. Huang; Dimosthenis Karatzas; Galina Paramei
Title Blue green color categorization in mandarin english speakers Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A
Volume (up) 29 Issue 2 Pages A102-A1207
Keywords
Abstract Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbert et al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ WXM2012 Serial 2007
Permanent link to this record
 

 
Author Lu Yu; Lichao Zhang; Joost Van de Weijer; Fahad Shahbaz Khan; Yongmei Cheng; C. Alejandro Parraga
Title Beyond Eleven Color Names for Image Understanding Type Journal Article
Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume (up) 29 Issue 2 Pages 361-373
Keywords Color name; Discriminative descriptors; Image classification; Re-identification; Tracking
Abstract Color description is one of the fundamental problems of image understanding. One of the popular ways to represent colors is by means of color names. Most existing work on color names focuses on only the eleven basic color terms of the English language. This could be limiting the discriminative power of these representations, and representations based on more color names are expected to perform better. However, there exists no clear strategy to choose additional color names. We collect a dataset of 28 additional color names. To ensure that the resulting color representation has high discriminative power we propose a method to order the additional color names according to their complementary nature with the basic color names. This allows us to compute color name representations with high discriminative power of arbitrary length. In the experiments we show that these new color name descriptors outperform the existing color name descriptor on the task of visual tracking, person re-identification and image classification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; NEUROBIT; 600.068; 600.109; 600.120 Approved no
Call Number Admin @ si @ YYW2018 Serial 3087
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Andrew Bagdanov; Michael Felsberg; Jorma
Title Scale coding bag of deep features for human attribute and action recognition Type Journal Article
Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume (up) 29 Issue 1 Pages 55-71
Keywords Action recognition; Attribute recognition; Bag of deep features
Abstract Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a bag of deep features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state of the art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.068; 600.079; 600.106; 600.120 Approved no
Call Number Admin @ si @ KWR2018 Serial 3107
Permanent link to this record
 

 
Author Albert Clapes; Alex Pardo; Oriol Pujol; Sergio Escalera
Title Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly Type Journal Article
Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume (up) 29 Issue 5 Pages 765–788
Keywords Multimodal activity detection; Computer vision; Inertial sensors; Dense trajectories; Dynamic time warping; Assistive technology
Abstract We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF- 2 kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ CPP2018 Serial 3125
Permanent link to this record
 

 
Author Reza Azad; Maryam Asadi-Aghbolaghi; Shohreh Kasaei; Sergio Escalera
Title Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps Type Journal Article
Year 2019 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT
Volume (up) 29 Issue 6 Pages 1729-1740
Keywords Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding
Abstract Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.
Address June 2019,
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ AAK2018 Serial 3213
Permanent link to this record
 

 
Author Khalid El Asnaoui; Petia Radeva
Title Automatically Assess Day Similarity Using Visual Lifelogs Type Journal Article
Year 2020 Publication International Journal of Intelligent Systems Abbreviated Journal IJIS
Volume (up) 29 Issue Pages 298–310
Keywords
Abstract Today, we witness the appearance of many lifelogging cameras that are able to capture the life of a person wearing the camera and which produce a large number of images everyday. Automatically characterizing the experience and extracting patterns of behavior of individuals from this huge collection of unlabeled and unstructured egocentric data present major challenges and require novel and efficient algorithmic solutions. The main goal of this work is to propose a new method to automatically assess day similarity from the lifelogging images of a person. We propose a technique to measure the similarity between images based on the Swain’s distance and generalize it to detect the similarity between daily visual data. To this purpose, we apply the dynamic time warping (DTW) combined with the Swain’s distance for final day similarity estimation. For validation, we apply our technique on the Egocentric Dataset of University of Barcelona (EDUB) of 4912 daily images acquired by four persons with preliminary encouraging results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number AsR2020 Serial 3409
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil
Title A Flexible Outlier Detector Based on a Topology Given by Graph Communities Type Journal Article
Year 2022 Publication Big Data Research Abbreviated Journal BDR
Volume (up) 29 Issue Pages 100332
Keywords Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors
Abstract Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings.
Address August 28, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 Approved no
Call Number Admin @ si @ RBG2022a Serial 3718
Permanent link to this record
 

 
Author E. Provenzi; Carlo Gatta; M. Fierro; A. Rizzi
Title A Spatially Variant White-Patch and Gray-World Method for Color Image Enhancement Driven by Local Constant Type Journal
Year 2008 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume (up) 30 Issue 10 Pages 1757–1770
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number BCNPCL @ bcnpcl @ PGF2008 Serial 1001
Permanent link to this record
 

 
Author Miquel Ferrer; Ernest Valveny; F. Serratosa
Title Median graph: A new exact algorithm using a distance based on the maximum common subgraph Type Journal Article
Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume (up) 30 Issue 5 Pages 579–588
Keywords
Abstract Median graphs have been presented as a useful tool for capturing the essential information of a set of graphs. Nevertheless, computation of optimal solutions is a very hard problem. In this work we present a new and more efficient optimal algorithm for the median graph computation. With the use of a particular cost function that permits the definition of the graph edit distance in terms of the maximum common subgraph, and a prediction function in the backtracking algorithm, we reduce the size of the search space, avoiding the evaluation of a great amount of states and still obtaining the exact median. We present a set of experiments comparing our new algorithm against the previous existing exact algorithm using synthetic data. In addition, we present the first application of the exact median graph computation to real data and we compare the results against an approximate algorithm based on genetic search. These experimental results show that our algorithm outperforms the previous existing exact algorithm and in addition show the potential applicability of the exact solutions to real problems.
Address
Corporate Author Thesis
Publisher Elsevier Science Inc. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8655 ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ FVS2009a Serial 1114
Permanent link to this record
 

 
Author Fadi Dornaika; Angel Sappa
Title Instantaneous 3D motion from image derivatives using the Least Trimmed Square Regression Type Journal Article
Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume (up) 30 Issue 5 Pages 535–543
Keywords
Abstract This paper presents a new technique to the instantaneous 3D motion estimation. The main contributions are as follows. First, we show that the 3D camera or scene velocity can be retrieved from image derivatives only assuming that the scene contains a dominant plane. Second, we propose a new robust algorithm that simultaneously provides the Least Trimmed Square solution and the percentage of inliers-the non-contaminated data. Experiments on both synthetic and real image sequences demonstrated the effectiveness of the developed method. Those experiments show that the new robust approach can outperform classical robust schemes.
Address
Corporate Author Thesis
Publisher Elsevier Science Inc. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8655 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number ADAS @ adas @ DoS2009a Serial 1115
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva
Title Separability of Ternary Codes for Sparse Designs of Error-Correcting Output Codes Type Journal Article
Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume (up) 30 Issue 3 Pages 285–297
Keywords
Abstract Error Correcting Output Codes (ECOC) represent a successful framework to deal with multi-class categorization problems based on combining binary classifiers. In this paper, we present a new formulation of the ternary ECOC distance and the error-correcting capabilities in the ternary ECOC framework. Based on the new measure, we stress on how to design coding matrices preventing codification ambiguity and propose a new Sparse Random coding matrix with ternary distance maximization. The results on the UCI Repository and in a real speed traffic categorization problem show that when the coding design satisfies the new ternary measures, significant performance improvement is obtained independently of the decoding strategy applied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB;HuPBA Approved no
Call Number BCNPCL @ bcnpcl @ EPR2009a Serial 1153
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; O. Pujol; Petia Radeva; Gemma Sanchez; Josep Llados
Title Blurred Shape Model for Binary and Grey-level Symbol Recognition Type Journal Article
Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume (up) 30 Issue 15 Pages 1424–1433
Keywords
Abstract Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; DAG; MILAB Approved no
Call Number BCNPCL @ bcnpcl @ EFP2009a Serial 1180
Permanent link to this record