Vacit Oguz Yazici, Joost Van de Weijer, & Longlong Yu. (2022). Visual Transformers with Primal Object Queries for Multi-Label Image Classification. In 26th International Conference on Pattern Recognition.
Abstract: Multi-label image classification is about predicting a set of class labels that can be considered as orderless sequential data. Transformers process the sequential data as a whole, therefore they are inherently good at set prediction. The first vision-based transformer model, which was proposed for the object detection task introduced the concept of object queries. Object queries are learnable positional encodings that are used by attention modules in decoder layers to decode the object classes or bounding boxes using the region of interests in an image. However, inputting the same set of object queries to different decoder layers hinders the training: it results in lower performance and delays convergence. In this paper, we propose the usage of primal object queries that are only provided at the start of the transformer decoder stack. In addition, we improve the mixup technique proposed for multi-label classification. The proposed transformer model with primal object queries improves the state-of-the-art class wise F1 metric by 2.1% and 1.8%; and speeds up the convergence by 79.0% and 38.6% on MS-COCO and NUS-WIDE datasets respectively.
|
Yaxing Wang, Joost Van de Weijer, Lu Yu, & Shangling Jui. (2022). Distilling GANs with Style-Mixed Triplets for X2I Translation with Limited Data. In 10th International Conference on Learning Representations.
Abstract: Conditional image synthesis is an integral part of many X2I translation systems, including image-to-image, text-to-image and audio-to-image translation systems. Training these large systems generally requires huge amounts of training data.
Therefore, we investigate knowledge distillation to transfer knowledge from a high-quality unconditioned generative model (e.g., StyleGAN) to a conditioned synthetic image generation modules in a variety of systems. To initialize the conditional and reference branch (from a unconditional GAN) we exploit the style mixing characteristics of high-quality GANs to generate an infinite supply of style-mixed triplets to perform the knowledge distillation. Extensive experimental results in a number of image generation tasks (i.e., image-to-image, semantic segmentation-to-image, text-to-image and audio-to-image) demonstrate qualitatively and quantitatively that our method successfully transfers knowledge to the synthetic image generation modules, resulting in more realistic images than previous methods as confirmed by a significant drop in the FID.
|
Kai Wang, Fei Yang, & Joost Van de Weijer. (2022). Attention Distillation: self-supervised vision transformer students need more guidance. In 33rd British Machine Vision Conference.
Abstract: Self-supervised learning has been widely applied to train high-quality vision transformers. Unleashing their excellent performance on memory and compute constraint devices is therefore an important research topic. However, how to distill knowledge from one self-supervised ViT to another has not yet been explored. Moreover, the existing self-supervised knowledge distillation (SSKD) methods focus on ConvNet based architectures are suboptimal for ViT knowledge distillation. In this paper, we study knowledge distillation of self-supervised vision transformers (ViT-SSKD). We show that directly distilling information from the crucial attention mechanism from teacher to student can significantly narrow the performance gap between both. In experiments on ImageNet-Subset and ImageNet-1K, we show that our method AttnDistill outperforms existing self-supervised knowledge distillation (SSKD) methods and achieves state-of-the-art k-NN accuracy compared with self-supervised learning (SSL) methods learning from scratch (with the ViT-S model). We are also the first to apply the tiny ViT-T model on self-supervised learning. Moreover, AttnDistill is independent of self-supervised learning algorithms, it can be adapted to ViT based SSL methods to improve the performance in future research.
|
Kai Wang, Chenshen Wu, Andrew Bagdanov, Xialei Liu, Shiqi Yang, Shangling Jui, et al. (2022). Positive Pair Distillation Considered Harmful: Continual Meta Metric Learning for Lifelong Object Re-Identification. In 33rd British Machine Vision Conference.
Abstract: Lifelong object re-identification incrementally learns from a stream of re-identification tasks. The objective is to learn a representation that can be applied to all tasks and that generalizes to previously unseen re-identification tasks. The main challenge is that at inference time the representation must generalize to previously unseen identities. To address this problem, we apply continual meta metric learning to lifelong object re-identification. To prevent forgetting of previous tasks, we use knowledge distillation and explore the roles of positive and negative pairs. Based on our observation that the distillation and metric losses are antagonistic, we propose to remove positive pairs from distillation to robustify model updates. Our method, called Distillation without Positive Pairs (DwoPP), is evaluated on extensive intra-domain experiments on person and vehicle re-identification datasets, as well as inter-domain experiments on the LReID benchmark. Our experiments demonstrate that DwoPP significantly outperforms the state-of-the-art.
|
Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, & Joost Van de Weijer. (2022). Local Prediction Aggregation: A Frustratingly Easy Source-free Domain Adaptation Method.
Abstract: We propose a simple but effective source-free domain adaptation (SFDA) method. Treating SFDA as an unsupervised clustering problem and following the intuition that local neighbors in feature space should have more similar predictions than other features, we propose to optimize an objective of prediction consistency. This objective encourages local neighborhood features in feature space to have similar predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective resulting in two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Our method can be also adapted to source-free open-set and partial-set DA which further shows the generalization ability of our method. Code is available in this https URL.
|
Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, & Joost Van de Weijer. (2022). One Ring to Bring Them All: Towards Open-Set Recognition under Domain Shift.
Abstract: In this paper, we investigate model adaptation under domain and category shift, where the final goal is to achieve
(SF-UNDA), which addresses the situation where there exist both domain and category shifts between source and target domains. Under the SF-UNDA setting, the model cannot access source data anymore during target adaptation, which aims to address data privacy concerns. We propose a novel training scheme to learn a (
+1)-way classifier to predict the
source classes and the unknown class, where samples of only known source categories are available for training. Furthermore, for target adaptation, we simply adopt a weighted entropy minimization to adapt the source pretrained model to the unlabeled target domain without source data. In experiments, we show:
After source training, the resulting source model can get excellent performance for
;
After target adaptation, our method surpasses current UNDA approaches which demand source data during adaptation. The versatility to several different tasks strongly proves the efficacy and generalization ability of our method.
When augmented with a closed-set domain adaptation approach during target adaptation, our source-free method further outperforms the current state-of-the-art UNDA method by 2.5%, 7.2% and 13% on Office-31, Office-Home and VisDA respectively.
|
Simone Zini, Alex Gomez-Villa, Marco Buzzelli, Bartlomiej Twardowski, Andrew D. Bagdanov, & Joost Van de Weijer. (2023). Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training. In 11th International Conference on Learning Representations.
Abstract: Several recent works on self-supervised learning are trained by mapping different augmentations of the same image to the same feature representation. The data augmentations used are of crucial importance to the quality of learned feature representations. In this paper, we analyze how the color jitter traditionally used in data augmentation negatively impacts the quality of the color features in learned feature representations. To address this problem, we propose a more realistic, physics-based color data augmentation – which we call Planckian Jitter – that creates realistic variations in chromaticity and produces a model robust to illumination changes that can be commonly observed in real life, while maintaining the ability to discriminate image content based on color information. Experiments confirm that such a representation is complementary to the representations learned with the currently-used color jitter augmentation and that a simple concatenation leads to significant performance gains on a wide range of downstream datasets. In addition, we present a color sensitivity analysis that documents the impact of different training methods on model neurons and shows that the performance of the learned features is robust with respect to illuminant variations.
|
Marco Cotogni, Fei Yang, Claudio Cusano, Andrew Bagdanov, & Joost Van de Weijer. (2022). Gated Class-Attention with Cascaded Feature Drift Compensation for Exemplar-free Continual Learning of Vision Transformers.
Abstract: We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
Keywords: Marco Cotogni, Fei Yang, Claudio Cusano, Andrew D. Bagdanov, Joost van de Weijer
|
Eduardo Aguilar, Bogdan Raducanu, Petia Radeva, & Joost Van de Weijer. (2023). Continual Evidential Deep Learning for Out-of-Distribution Detection. In IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop (pp. 3444–3454).
Abstract: Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.
|
JW Xiao, CB Zhang, J. Feng, Xialei Liu, Joost Van de Weijer, & MM Cheng. (2023). Endpoints Weight Fusion for Class Incremental Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7204–7213).
Abstract: Class incremental semantic segmentation (CISS) focuses on alleviating catastrophic forgetting to improve discrimination. Previous work mainly exploit regularization (e.g., knowledge distillation) to maintain previous knowledge in the current model. However, distillation alone often yields limited gain to the model since only the representations of old and new models are restricted to be consistent. In this paper, we propose a simple yet effective method to obtain a model with strong memory of old knowledge, named Endpoints Weight Fusion (EWF). In our method, the model containing old knowledge is fused with the model retaining new knowledge in a dynamic fusion manner, strengthening the memory of old classes in ever-changing distributions. In addition, we analyze the relation between our fusion strategy and a popular moving average technique EMA, which reveals why our method is more suitable for class-incremental learning. To facilitate parameter fusion with closer distance in the parameter space, we use distillation to enhance the optimization process. Furthermore, we conduct experiments on two widely used datasets, achieving the state-of-the-art performance.
|
Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, Davide Bacciu, & Joost Van de Weijer. (2023). Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning.
Abstract: Distributed learning on the edge often comprises self-centered devices (SCD) which learn local tasks independently and are unwilling to contribute to the performance of other SDCs. How do we achieve forward transfer at zero cost for the single SCDs? We formalize this problem as a Distributed Continual Learning scenario, where SCD adapt to local tasks and a CL model consolidates the knowledge from the resulting stream of models without looking at the SCD's private data. Unfortunately, current CL methods are not directly applicable to this scenario. We propose Data-Agnostic Consolidation (DAC), a novel double knowledge distillation method that consolidates the stream of SC models without using the original data. DAC performs distillation in the latent space via a novel Projected Latent Distillation loss. Experimental results show that DAC enables forward transfer between SCDs and reaches state-of-the-art accuracy on Split CIFAR100, CORe50 and Split TinyImageNet, both in reharsal-free and distributed CL scenarios. Somewhat surprisingly, even a single out-of-distribution image is sufficient as the only source of data during consolidation.
|
Marcos V Conde, Javier Vazquez, Michael S Brown, & Radu TImofte. (2024). NILUT: Conditional Neural Implicit 3D Lookup Tables for Image Enhancement. In 38th AAAI Conference on Artificial Intelligence.
Abstract: 3D lookup tables (3D LUTs) are a key component for image enhancement. Modern image signal processors (ISPs) have dedicated support for these as part of the camera rendering pipeline. Cameras typically provide multiple options for picture styles, where each style is usually obtained by applying a unique handcrafted 3D LUT. Current approaches for learning and applying 3D LUTs are notably fast, yet not so memory-efficient, as storing multiple 3D LUTs is required. For this reason and other implementation limitations, their use on mobile devices is less popular. In this work, we propose a Neural Implicit LUT (NILUT), an implicitly defined continuous 3D color transformation parameterized by a neural network. We show that NILUTs are capable of accurately emulating real 3D LUTs. Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly. Our novel approach is memory-efficient, controllable and can complement previous methods, including learned ISPs.
|
Danna Xue, Javier Vazquez, Luis Herranz, Yang Zhang, & Michael S Brown. (2023). Integrating High-Level Features for Consistent Palette-based Multi-image Recoloring. CGF - Computer Graphics Forum, .
Abstract: Achieving visually consistent colors across multiple images is important when images are used in photo albums, websites, and brochures. Unfortunately, only a handful of methods address multi-image color consistency compared to one-to-one color transfer techniques. Furthermore, existing methods do not incorporate high-level features that can assist graphic designers in their work. To address these limitations, we introduce a framework that builds upon a previous palette-based color consistency method and incorporates three high-level features: white balance, saliency, and color naming. We show how these features overcome the limitations of the prior multi-consistency workflow and showcase the user-friendly nature of our framework.
|
Marcos V Conde, Florin Vasluianu, Javier Vazquez, & Radu Timofte. (2023). Perceptual image enhancement for smartphone real-time applications. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1848–1858).
Abstract: Recent advances in camera designs and imaging pipelines allow us to capture high-quality images using smartphones. However, due to the small size and lens limitations of the smartphone cameras, we commonly find artifacts or degradation in the processed images. The most common unpleasant effects are noise artifacts, diffraction artifacts, blur, and HDR overexposure. Deep learning methods for image restoration can successfully remove these artifacts. However, most approaches are not suitable for real-time applications on mobile devices due to their heavy computation and memory requirements. In this paper, we propose LPIENet, a lightweight network for perceptual image enhancement, with the focus on deploying it on smartphones. Our experiments show that, with much fewer parameters and operations, our model can deal with the mentioned artifacts and achieve competitive performance compared with state-of-the-art methods on standard benchmarks. Moreover, to prove the efficiency and reliability of our approach, we deployed the model directly on commercial smartphones and evaluated its performance. Our model can process 2K resolution images under 1 second in mid-level commercial smartphones.
|
Dipam Goswami, J Schuster, Joost Van de Weijer, & Didier Stricker. (2023). Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 3195–3204).
Abstract: Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation. D Goswami, R Schuster, J van de Weijer, D Stricker. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023, pp. 3195-3204
|
Danna Xue, Luis Herranz, Javier Vazquez, & Yanning Zhang. (2023). Burst Perception-Distortion Tradeoff: Analysis and Evaluation. In IEEE International Conference on Acoustics, Speech and Signal Processing.
Abstract: Burst image restoration attempts to effectively utilize the complementary cues appearing in sequential images to produce a high-quality image. Most current methods use all the available images to obtain the reconstructed image. However, using more images for burst restoration is not always the best option regarding reconstruction quality and efficiency, as the images acquired by handheld imaging devices suffer from degradation and misalignment caused by the camera noise and shake. In this paper, we extend the perception-distortion tradeoff theory by introducing multiple-frame information. We propose the area of the unattainable region as a new metric for perception-distortion tradeoff evaluation and comparison. Based on this metric, we analyse the performance of burst restoration from the perspective of the perception-distortion tradeoff under both aligned bursts and misaligned bursts situations. Our analysis reveals the importance of inter-frame alignment for burst restoration and shows that the optimal burst length for the restoration model depends both on the degree of degradation and misalignment.
|
Yawei Li, Yulun Zhang, Radu Timofte, Luc Van Gool, Zhijun Tu, Kunpeng Du, et al. (2023). NTIRE 2023 challenge on image denoising: Methods and results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 1904–1920).
Abstract: This paper reviews the NTIRE 2023 challenge on image denoising (σ = 50) with a focus on the proposed solutions and results. The aim is to obtain a network design capable to produce high-quality results with the best performance measured by PSNR for image denoising. Independent additive white Gaussian noise (AWGN) is assumed and the noise level is 50. The challenge had 225 registered participants, and 16 teams made valid submissions. They gauge the state-of-the-art for image denoising.
|
Chenshen Wu, & Joost Van de Weijer. (2023). Density Map Distillation for Incremental Object Counting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 2505–2514).
Abstract: We investigate the problem of incremental learning for object counting, where a method must learn to count a variety of object classes from a sequence of datasets. A naïve approach to incremental object counting would suffer from catastrophic forgetting, where it would suffer from a dramatic performance drop on previous tasks. In this paper, we propose a new exemplar-free functional regularization method, called Density Map Distillation (DMD). During training, we introduce a new counter head for each task and introduce a distillation loss to prevent forgetting of previous tasks. Additionally, we introduce a cross-task adaptor that projects the features of the current backbone to the previous backbone. This projector allows for the learning of new features while the backbone retains the relevant features for previous tasks. Finally, we set up experiments of incremental learning for counting new objects. Results confirm that our method greatly reduces catastrophic forgetting and outperforms existing methods.
|