|   | 
Details
   web
Records
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal
Title DocSynth: A Layout Guided Approach for Controllable Document Image Synthesis Type Conference Article
Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume (up) 12823 Issue Pages 555–568
Keywords
Abstract Despite significant progress on current state-of-the-art image generation models, synthesis of document images containing multiple and complex object layouts is a challenging task. This paper presents a novel approach, called DocSynth, to automatically synthesize document images based on a given layout. In this work, given a spatial layout (bounding boxes with object categories) as a reference by the user, our proposed DocSynth model learns to generate a set of realistic document images consistent with the defined layout. Also, this framework has been adapted to this work as a superior baseline model for creating synthetic document image datasets for augmenting real data during training for document layout analysis tasks. Different sets of learning objectives have been also used to improve the model performance. Quantitatively, we also compare the generated results of our model with real data using standard evaluation metrics. The results highlight that our model can successfully generate realistic and diverse document images with multiple objects. We also present a comprehensive qualitative analysis summary of the different scopes of synthetic image generation tasks. Lastly, to our knowledge this is the first work of its kind.
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.140; 110.312 Approved no
Call Number Admin @ si @ BRL2021a Serial 3573
Permanent link to this record
 

 
Author Josep Llados; Daniel Lopresti; Seiichi Uchida (eds)
Title 16th International Conference, 2021, Proceedings, Part IV Type Book Whole
Year 2021 Publication Document Analysis and Recognition – ICDAR 2021 Abbreviated Journal
Volume (up) 12824 Issue Pages
Keywords
Abstract This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
Address Lausanne, Switzerland, September 5-10, 2021
Corporate Author Thesis
Publisher Springer Cham Place of Publication Editor Josep Llados; Daniel Lopresti; Seiichi Uchida
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-030-86336-4 Medium
Area Expedition Conference ICDAR
Notes DAG Approved no
Call Number Admin @ si @ Serial 3728
Permanent link to this record
 

 
Author Pau Torras; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes
Title A Transcription Is All You Need: Learning to Align through Attention Type Conference Article
Year 2021 Publication 14th IAPR International Workshop on Graphics Recognition Abbreviated Journal
Volume (up) 12916 Issue Pages 141–146
Keywords
Abstract Historical ciphered manuscripts are a type of document where graphical symbols are used to encrypt their content instead of regular text. Nowadays, expert transcriptions can be found in libraries alongside the corresponding manuscript images. However, those transcriptions are not aligned, so these are barely usable for training deep learning-based recognition methods. To solve this issue, we propose a method to align each symbol in the transcript of an image with its visual representation by using an attention-based Sequence to Sequence (Seq2Seq) model. The core idea is that, by learning to recognise symbols sequence within a cipher line image, the model also identifies their position implicitly through an attention mechanism. Thus, the resulting symbol segmentation can be later used for training algorithms. The experimental evaluation shows that this method is promising, especially taking into account the small size of the cipher dataset.
Address Virtual; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GREC
Notes DAG; 602.230; 600.140; 600.121 Approved no
Call Number Admin @ si @ TSC2021 Serial 3619
Permanent link to this record
 

 
Author Albert Suso; Pau Riba; Oriol Ramos Terrades; Josep Llados
Title A Self-supervised Inverse Graphics Approach for Sketch Parametrization Type Conference Article
Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume (up) 12916 Issue Pages 28-42
Keywords
Abstract The study of neural generative models of handwritten text and human sketches is a hot topic in the computer vision field. The landmark SketchRNN provided a breakthrough by sequentially generating sketches as a sequence of waypoints, and more recent articles have managed to generate fully vector sketches by coding the strokes as Bézier curves. However, the previous attempts with this approach need them all a ground truth consisting in the sequence of points that make up each stroke, which seriously limits the datasets the model is able to train in. In this work, we present a self-supervised end-to-end inverse graphics approach that learns to embed each image to its best fit of Bézier curves. The self-supervised nature of the training process allows us to train the model in a wider range of datasets, but also to perform better after-training predictions by applying an overfitting process on the input binary image. We report qualitative an quantitative evaluations on the MNIST and the Quick, Draw! datasets.
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ SRR2021 Serial 3675
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal
Title Graph-Based Deep Generative Modelling for Document Layout Generation Type Conference Article
Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume (up) 12917 Issue Pages 525-537
Keywords
Abstract One of the major prerequisites for any deep learning approach is the availability of large-scale training data. When dealing with scanned document images in real world scenarios, the principal information of its content is stored in the layout itself. In this work, we have proposed an automated deep generative model using Graph Neural Networks (GNNs) to generate synthetic data with highly variable and plausible document layouts that can be used to train document interpretation systems, in this case, specially in digital mailroom applications. It is also the first graph-based approach for document layout generation task experimented on administrative document images, in this case, invoices.
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.140; 110.312 Approved no
Call Number Admin @ si @ BRL2021 Serial 3676
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Dario Carpio; Angel Sappa
Title Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type Conference Article
Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal
Volume (up) 13017 Issue Pages 131–143
Keywords
Abstract This paper presents a complete pipeline to perform deep learning-based instance segmentation of different types of grains (e.g., corn, sunflower, soybeans, lentils, chickpeas, mote, and beans). The proposed approach consists of using synthesized image datasets for the training process, which are easily generated according to the category of the instance to be segmented. The synthesized imaging process allows generating a large set of well-annotated grain samples with high variability—as large and high as the user requires. Instance segmentation is performed through a popular deep learning based approach, the Mask R-CNN architecture, but any learning-based instance segmentation approach can be considered. Results obtained by the proposed pipeline show that the strategy of using synthesized image datasets for training instance segmentation helps to avoid the time-consuming image annotation stage, as well as to achieve higher intersection over union and average precision performances. Results obtained with different varieties of grains are shown, as well as comparisons with manually annotated images, showing both the simplicity of the process and the improvements in the performance.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISVC
Notes MSIAU Approved no
Call Number Admin @ si @ VSC2021 Serial 3667
Permanent link to this record
 

 
Author Patricia Suarez; Dario Carpio; Angel Sappa
Title Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture Type Conference Article
Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal
Volume (up) 13018 Issue Pages 178–190
Keywords
Abstract This paper presents a novel attention based architecture to remove non-homogeneous haze. The proposed model is focused on obtaining the most representative characteristics of the image, at each learning cycle, by means of adaptive attention modules coupled with a residual learning convolutional network. The latter is based on the Res2Net model. The proposed architecture is trained with just a few set of images. Its performance is evaluated on a public benchmark—images from the non-homogeneous haze NTIRE 2021 challenge—and compared with state of the art approaches reaching the best result.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISVC
Notes MSIAU Approved no
Call Number Admin @ si @ SCS2021 Serial 3668
Permanent link to this record
 

 
Author Javad Zolfaghari Bengar; Bogdan Raducanu; Joost Van de Weijer
Title When Deep Learners Change Their Mind: Learning Dynamics for Active Learning Type Conference Article
Year 2021 Publication 19th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal
Volume (up) 13052 Issue 1 Pages 403-413
Keywords
Abstract Active learning aims to select samples to be annotated that yield the largest performance improvement for the learning algorithm. Many methods approach this problem by measuring the informativeness of samples and do this based on the certainty of the network predictions for samples. However, it is well-known that neural networks are overly confident about their prediction and are therefore an untrustworthy source to assess sample informativeness. In this paper, we propose a new informativeness-based active learning method. Our measure is derived from the learning dynamics of a neural network. More precisely we track the label assignment of the unlabeled data pool during the training of the algorithm. We capture the learning dynamics with a metric called label-dispersion, which is low when the network consistently assigns the same label to the sample during the training of the network and high when the assigned label changes frequently. We show that label-dispersion is a promising predictor of the uncertainty of the network, and show on two benchmark datasets that an active learning algorithm based on label-dispersion obtains excellent results.
Address September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CAIP
Notes LAMP; Approved no
Call Number Admin @ si @ ZRV2021 Serial 3673
Permanent link to this record