toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Marc Masana; Tinne Tuytelaars; Joost Van de Weijer edit   pdf
doi  openurl
  Title Ternary Feature Masks: zero-forgetting for task-incremental learning Type Conference Article
  Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 3565-3574  
  Keywords  
  Abstract We propose an approach without any forgetting to continual learning for the task-aware regime, where at inference the task-label is known. By using ternary masks we can upgrade a model to new tasks, reusing knowledge from previous tasks while not forgetting anything about them. Using masks prevents both catastrophic forgetting and backward transfer. We argue -- and show experimentally -- that avoiding the former largely compensates for the lack of the latter, which is rarely observed in practice. In contrast to earlier works, our masks are applied to the features (activations) of each layer instead of the weights. This considerably reduces the number of mask parameters for each new task; with more than three orders of magnitude for most networks. The encoding of the ternary masks into two bits per feature creates very little overhead to the network, avoiding scalability issues. To allow already learned features to adapt to the current task without changing the behavior of these features for previous tasks, we introduce task-specific feature normalization. Extensive experiments on several finegrained datasets and ImageNet show that our method outperforms current state-of-the-art while reducing memory overhead in comparison to weight-based approaches.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MTW2021 Serial 3565  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera; Mohammad Sabokrou edit   pdf
doi  openurl
  Title Sign Language Production: A Review Type Conference Article
  Year 2021 Publication Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 3472-3481  
  Keywords  
  Abstract Sign Language is the dominant yet non-primary form of communication language used in the deaf and hearing-impaired community. To make an easy and mutual communication between the hearing-impaired and the hearing communities, building a robust system capable of translating the spoken language into sign language and vice versa is fundamental. To this end, sign language recognition and production are two necessary parts for making such a two-way system. Sign language recognition and production need to cope with some critical challenges. In this survey, we review recent advances in Sign Language Production (SLP) and related areas using deep learning. This survey aims to briefly summarize recent achievements in SLP, discussing their advantages, limitations, and future directions of research.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ RKE2021b Serial 3603  
Permanent link to this record
 

 
Author Sudeep Katakol; Luis Herranz; Fei Yang; Marta Mrak edit   pdf
doi  openurl
  Title DANICE: Domain adaptation without forgetting in neural image compression Type Conference Article
  Year 2021 Publication Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 1921-1925  
  Keywords  
  Abstract Neural image compression (NIC) is a new coding paradigm where coding capabilities are captured by deep models learned from data. This data-driven nature enables new potential functionalities. In this paper, we study the adaptability of codecs to custom domains of interest. We show that NIC codecs are transferable and that they can be adapted with relatively few target domain images. However, naive adaptation interferes with the solution optimized for the original source domain, resulting in forgetting the original coding capabilities in that domain, and may even break the compatibility with previously encoded bitstreams. Addressing these problems, we propose Codec Adaptation without Forgetting (CAwF), a framework that can avoid these problems by adding a small amount of custom parameters, where the source codec remains embedded and unchanged during the adaptation process. Experiments demonstrate its effectiveness and provide useful insights on the characteristics of catastrophic interference in NIC.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.120; 600.141; 601.379 Approved no  
  Call Number Admin @ si @ KHY2021 Serial 3568  
Permanent link to this record
 

 
Author Meysam Madadi; Hugo Bertiche; Sergio Escalera edit   pdf
doi  openurl
  Title Deep unsupervised 3D human body reconstruction from a sparse set of landmarks Type Journal Article
  Year 2021 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 129 Issue Pages 2499–2512  
  Keywords  
  Abstract In this paper we propose the first deep unsupervised approach in human body reconstruction to estimate body surface from a sparse set of landmarks, so called DeepMurf. We apply a denoising autoencoder to estimate missing landmarks. Then we apply an attention model to estimate body joints from landmarks. Finally, a cascading network is applied to regress parameters of a statistical generative model that reconstructs body. Our set of proposed loss functions allows us to train the network in an unsupervised way. Results on four public datasets show that our approach accurately reconstructs the human body from real world mocap data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ MBE2021 Serial 3654  
Permanent link to this record
 

 
Author Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) edit  doi
isbn  openurl
  Title 16th International Conference, 2021, Proceedings, Part I Type Book Whole
  Year 2021 Publication Document Analysis and Recognition – ICDAR 2021 Abbreviated Journal  
  Volume 12821 Issue Pages  
  Keywords  
  Abstract This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: historical document analysis, document analysis systems, handwriting recognition, scene text detection and recognition, document image processing, natural language processing (NLP) for document understanding, and graphics, diagram and math recognition.
 
  Address Lausanne, Switzerland, September 5-10, 2021  
  Corporate Author Thesis  
  Publisher Springer Cham Place of Publication Editor Josep Llados; Daniel Lopresti; Seiichi Uchida  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86548-1 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3725  
Permanent link to this record
 

 
Author Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) edit  doi
isbn  openurl
  Title 16th International Conference, 2021, Proceedings, Part IV Type Book Whole
  Year 2021 Publication Document Analysis and Recognition – ICDAR 2021 Abbreviated Journal  
  Volume 12824 Issue Pages  
  Keywords  
  Abstract This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
 
  Address Lausanne, Switzerland, September 5-10, 2021  
  Corporate Author Thesis  
  Publisher Springer Cham Place of Publication Editor Josep Llados; Daniel Lopresti; Seiichi Uchida  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86336-4 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3728  
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal edit   pdf
doi  openurl
  Title DocSynth: A Layout Guided Approach for Controllable Document Image Synthesis Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12823 Issue Pages 555–568  
  Keywords  
  Abstract Despite significant progress on current state-of-the-art image generation models, synthesis of document images containing multiple and complex object layouts is a challenging task. This paper presents a novel approach, called DocSynth, to automatically synthesize document images based on a given layout. In this work, given a spatial layout (bounding boxes with object categories) as a reference by the user, our proposed DocSynth model learns to generate a set of realistic document images consistent with the defined layout. Also, this framework has been adapted to this work as a superior baseline model for creating synthetic document image datasets for augmenting real data during training for document layout analysis tasks. Different sets of learning objectives have been also used to improve the model performance. Quantitatively, we also compare the generated results of our model with real data using standard evaluation metrics. The results highlight that our model can successfully generate realistic and diverse document images with multiple objects. We also present a comprehensive qualitative analysis summary of the different scopes of synthetic image generation tasks. Lastly, to our knowledge this is the first work of its kind.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ BRL2021a Serial 3573  
Permanent link to this record
 

 
Author Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) edit  doi
isbn  openurl
  Title 16th International Conference, 2021, Proceedings, Part III Type Book Whole
  Year 2021 Publication Document Analysis and Recognition – ICDAR 2021 Abbreviated Journal  
  Volume 12823 Issue Pages  
  Keywords  
  Abstract This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
 
  Address Lausanne, Switzerland, September 5-10, 2021  
  Corporate Author Thesis  
  Publisher Springer Cham Place of Publication Editor Josep Llados; Daniel Lopresti; Seiichi Uchida  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86333-3 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3727  
Permanent link to this record
 

 
Author Pau Riba; Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados edit   pdf
doi  openurl
  Title Learning to Rank Words: Optimizing Ranking Metrics for Word Spotting Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12822 Issue Pages 381–395  
  Keywords  
  Abstract In this paper, we explore and evaluate the use of ranking-based objective functions for learning simultaneously a word string and a word image encoder. We consider retrieval frameworks in which the user expects a retrieval list ranked according to a defined relevance score. In the context of a word spotting problem, the relevance score has been set according to the string edit distance from the query string. We experimentally demonstrate the competitive performance of the proposed model on query-by-string word spotting for both, handwritten and real scene word images. We also provide the results for query-by-example word spotting, although it is not the main focus of this work.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ RMG2021 Serial 3572  
Permanent link to this record
 

 
Author Adria Molina; Pau Riba; Lluis Gomez; Oriol Ramos Terrades; Josep Llados edit   pdf
doi  openurl
  Title Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12822 Issue Pages 306-320  
  Keywords  
  Abstract This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ MRG2021b Serial 3571  
Permanent link to this record
 

 
Author Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) edit  doi
isbn  openurl
  Title 16th International Conference, 2021, Proceedings, Part II Type Book Whole
  Year 2021 Publication Document Analysis and Recognition – ICDAR 2021 Abbreviated Journal  
  Volume 12822 Issue Pages  
  Keywords  
  Abstract This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding.
 
  Address Lausanne, Switzerland, September 5-10, 2021  
  Corporate Author Thesis  
  Publisher Springer Cham Place of Publication Editor Josep Llados; Daniel Lopresti; Seiichi Uchida  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-86330-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3726  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Raquel Perez edit  doi
openurl 
  Title Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution Type Book Chapter
  Year 2021 Publication Extended Abstracts GEOMVAP 2019, Trends in Mathematics 15 Abbreviated Journal  
  Volume 15 Issue Pages 89–93  
  Keywords  
  Abstract Abnormalities in radiomic measures correlate to genomic alterations prone to alter the outcome of personalized anti-cancer treatments. TOPiomics is a new method for the early detection of variations in tumor imaging phenotype from a topological structure in multi-view radiomic spaces.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Nature Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.120; 600.145; 600.139 Approved no  
  Call Number Admin @ si @ GRP2021 Serial 3594  
Permanent link to this record
 

 
Author David Aldavert edit  isbn
openurl 
  Title Efficient and Scalable Handwritten Word Spotting on Historical Documents using Bag of Visual Words Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Word spotting can be defined as the pattern recognition tasked aimed at locating and retrieving a specific keyword within a document image collection without explicitly transcribing the whole corpus. Its use is particularly interesting when applied in scenarios where Optical Character Recognition performs poorly or can not be used at all. This thesis focuses on such a scenario, word spotting on historical handwritten documents that have been written by a single author or by multiple authors with a similar calligraphy.
This problem requires a visual signature that is robust to image artifacts, flexible to accommodate script variations and efficient to retrieve information in a rapid manner. For this, we have developed a set of word spotting methods that on their foundation use the well known Bag-of-Visual-Words (BoVW) representation. This representation has gained popularity among the document image analysis community to characterize handwritten words
in an unsupervised manner. However, most approaches on this field rely on a basic BoVW configuration and disregard complex encoding and spatial representations. We determine which BoVW configurations provide the best performance boost to a spotting system.
Then, we extend the segmentation-based word spotting, where word candidates are given a priori, to segmentation-free spotting. The proposed approach seeds the document images with overlapping word location candidates and characterizes them with a BoVW signature. Retrieval is achieved comparing the query and candidate signatures and returning the locations that provide a higher consensus. This is a simple but powerful approach that requires a more compact signature than in a segmentation-based scenario. We first
project the BoVW signature into a reduced semantic topics space and then compress it further using Product Quantizers. The resulting signature only requires a few dozen bytes, allowing us to index thousands of pages on a common desktop computer. The final system still yields a performance comparable to the state-of-the-art despite all the information loss during the compression phases.
Afterwards, we also study how to combine different modalities of information in order to create a query-by-X spotting system where, words are indexed using an information modality and queries are retrieved using another. We consider three different information modalities: visual, textual and audio. Our proposal is to create a latent feature space where features which are semantically related are projected onto the same topics. Creating thus a new feature space where information from different modalities can be compared. Later, we consider the codebook generation and descriptor encoding problem. The codebooks used to encode the BoVW signatures are usually created using an unsupervised clustering algorithm and, they require to test multiple parameters to determine which configuration is best for a certain document collection. We propose a semantic clustering algorithm which allows to estimate the best parameter from data. Since gather annotated data is costly, we use synthetically generated word images. The resulting codebook is database agnostic, i. e. a codebook that yields a good performance on document collections that use the same script. We also propose the use of an additional codebook to approximate descriptors and reduce the descriptor encoding
complexity to sub-linear.
Finally, we focus on the problem of signatures dimensionality. We propose a new symbol probability signature where each bin represents the probability that a certain symbol is present a certain location of the word image. This signature is extremely compact and combined with compression techniques can represent word images with just a few bytes per signature.
 
  Address April 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Marçal Rusiñol;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-5-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Ald2021 Serial 3601  
Permanent link to this record
 

 
Author Carola Figueroa Flores edit  isbn
openurl 
  Title Visual Saliency for Object Recognition, and Object Recognition for Visual Saliency Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords computer vision; visual saliency; fine-grained object recognition; convolutional neural networks; images classification  
  Abstract For humans, the recognition of objects is an almost instantaneous, precise and
extremely adaptable process. Furthermore, we have the innate capability to learn
new object classes from only few examples. The human brain lowers the complexity
of the incoming data by filtering out part of the information and only processing
those things that capture our attention. This, mixed with our biological predisposition to respond to certain shapes or colors, allows us to recognize in a simple
glance the most important or salient regions from an image. This mechanism can
be observed by analyzing on which parts of images subjects place attention; where
they fix their eyes when an image is shown to them. The most accurate way to
record this behavior is to track eye movements while displaying images.
Computational saliency estimation aims to identify to what extent regions or
objects stand out with respect to their surroundings to human observers. Saliency
maps can be used in a wide range of applications including object detection, image
and video compression, and visual tracking. The majority of research in the field has
focused on automatically estimating saliency maps given an input image. Instead, in
this thesis, we set out to incorporate saliency maps in an object recognition pipeline:
we want to investigate whether saliency maps can improve object recognition
results.
In this thesis, we identify several problems related to visual saliency estimation.
First, to what extent the estimation of saliency can be exploited to improve the
training of an object recognition model when scarce training data is available. To
solve this problem, we design an image classification network that incorporates
saliency information as input. This network processes the saliency map through a
dedicated network branch and uses the resulting characteristics to modulate the
standard bottom-up visual characteristics of the original image input. We will refer to this technique as saliency-modulated image classification (SMIC). In extensive
experiments on standard benchmark datasets for fine-grained object recognition,
we show that our proposed architecture can significantly improve performance,
especially on dataset with scarce training data.
Next, we address the main drawback of the above pipeline: SMIC requires an
explicit saliency algorithm that must be trained on a saliency dataset. To solve this,
we implement a hallucination mechanism that allows us to incorporate the saliency
estimation branch in an end-to-end trained neural network architecture that only
needs the RGB image as an input. A side-effect of this architecture is the estimation
of saliency maps. In experiments, we show that this architecture can obtain similar
results on object recognition as SMIC but without the requirement of ground truth
saliency maps to train the system.
Finally, we evaluated the accuracy of the saliency maps that occur as a sideeffect of object recognition. For this purpose, we use a set of benchmark datasets
for saliency evaluation based on eye-tracking experiments. Surprisingly, the estimated saliency maps are very similar to the maps that are computed from human
eye-tracking experiments. Our results show that these saliency maps can obtain
competitive results on benchmark saliency maps. On one synthetic saliency dataset
this method even obtains the state-of-the-art without the need of ever having seen
an actual saliency image for training.
 
  Address March 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-4-7 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ Fig2021 Serial 3600  
Permanent link to this record
 

 
Author Gabriel Villalonga edit  isbn
openurl 
  Title Leveraging Synthetic Data to Create Autonomous Driving Perception Systems Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Manually annotating images to develop vision models has been a major bottleneck
since computer vision and machine learning started to walk together. This has
been more evident since computer vision falls on the shoulders of data-hungry
deep learning techniques. When addressing on-board perception for autonomous
driving, the curse of data annotation is exacerbated due to the use of additional
sensors such as LiDAR. Therefore, any approach aiming at reducing such a timeconsuming and costly work is of high interest for addressing autonomous driving
and, in fact, for any application requiring some sort of artificial perception. In the
last decade, it has been shown that leveraging from synthetic data is a paradigm
worth to pursue in order to minimizing manual data annotation. The reason is
that the automatic process of generating synthetic data can also produce different
types of associated annotations (e.g. object bounding boxes for synthetic images
and LiDAR pointclouds, pixel/point-wise semantic information, etc.). Directly
using synthetic data for training deep perception models may not be the definitive
solution in all circumstances since it can appear a synth-to-real domain shift. In
this context, this work focuses on leveraging synthetic data to alleviate manual
annotation for three perception tasks related to driving assistance and autonomous
driving. In all cases, we assume the use of deep convolutional neural networks
(CNNs) to develop our perception models.
The first task addresses traffic sign recognition (TSR), a kind of multi-class
classification problem. We assume that the number of sign classes to be recognized
must be suddenly increased without having annotated samples to perform the
corresponding TSR CNN re-training. We show that leveraging synthetic samples of
such new classes and transforming them by a generative adversarial network (GAN)
trained on the known classes (i.e. without using samples from the new classes), it is
possible to re-train the TSR CNN to properly classify all the signs for a ∼ 1/4 ratio of
new/known sign classes. The second task addresses on-board 2D object detection,
focusing on vehicles and pedestrians. In this case, we assume that we receive a set
of images without the annotations required to train an object detector, i.e. without
object bounding boxes. Therefore, our goal is to self-annotate these images so
that they can later be used to train the desired object detector. In order to reach
this goal, we leverage from synthetic data and propose a semi-supervised learning
approach based on the co-training idea. In fact, we use a GAN to reduce the synthto-real domain shift before applying co-training. Our quantitative results show
that co-training and GAN-based image-to-image translation complement each
other up to allow the training of object detectors without manual annotation, and still almost reaching the upper-bound performances of the detectors trained from
human annotations. While in previous tasks we focus on vision-based perception,
the third task we address focuses on LiDAR pointclouds. Our initial goal was to
develop a 3D object detector trained on synthetic LiDAR-style pointclouds. While
for images we may expect synth/real-to-real domain shift due to differences in
their appearance (e.g. when source and target images come from different camera
sensors), we did not expect so for LiDAR pointclouds since these active sensors
factor out appearance and provide sampled shapes. However, in practice, we have
seen that it can be domain shift even among real-world LiDAR pointclouds. Factors
such as the sampling parameters of the LiDARs, the sensor suite configuration onboard the ego-vehicle, and the human annotation of 3D bounding boxes, do induce
a domain shift. We show it through comprehensive experiments with different
publicly available datasets and 3D detectors. This redirected our goal towards the
design of a GAN for pointcloud-to-pointcloud translation, a relatively unexplored
topic.
Finally, it is worth to mention that all the synthetic datasets used for these three
tasks, have been designed and generated in the context of this PhD work and will
be publicly released. Overall, we think this PhD presents several steps forward to
encourage leveraging synthetic data for developing deep perception models in the
field of driving assistance and autonomous driving.
 
  Address February 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;German Ros  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-2-3 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Vil2021 Serial 3599  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: