|   | 
Details
   web
Records
Author Bhaskar Chakraborty; Michael Holte; Thomas B. Moeslund; Jordi Gonzalez
Title Selective Spatio-Temporal Interest Points Type Journal Article
Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 116 Issue 3 Pages 396-410
Keywords
Abstract Recent progress in the field of human action recognition points towards the use of Spatio-TemporalInterestPoints (STIPs) for local descriptor-based recognition strategies. In this paper, we present a novel approach for robust and selective STIP detection, by applying surround suppression combined with local and temporal constraints. This new method is significantly different from existing STIP detection techniques and improves the performance by detecting more repeatable, stable and distinctive STIPs for human actors, while suppressing unwanted background STIPs. For action representation we use a bag-of-video words (BoV) model of local N-jet features to build a vocabulary of visual-words. To this end, we introduce a novel vocabulary building strategy by combining spatial pyramid and vocabulary compression techniques, resulting in improved performance and efficiency. Action class specific Support Vector Machine (SVM) classifiers are trained for categorization of human actions. A comprehensive set of experiments on popular benchmark datasets (KTH and Weizmann), more challenging datasets of complex scenes with background clutter and camera motion (CVC and CMU), movie and YouTube video clips (Hollywood 2 and YouTube), and complex scenes with multiple actors (MSR I and Multi-KTH), validates our approach and show state-of-the-art performance. Due to the unavailability of ground truth action annotation data for the Multi-KTH dataset, we introduce an actor specific spatio-temporal clustering of STIPs to address the problem of automatic action annotation of multiple simultaneous actors. Additionally, we perform cross-data action recognition by training on source datasets (KTH and Weizmann) and testing on completely different and more challenging target datasets (CVC, CMU, MSR I and Multi-KTH). This documents the robustness of our proposed approach in the realistic scenario, using separate training and test datasets, which in general has been a shortcoming in the performance evaluation of human action recognition techniques.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-3142 ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ CHM2012 Serial 1806
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva
Title Extending anisotropic operators to recover smooth shapes Type Journal Article
Year 2005 Publication Computer Vision and Image Understanding Abbreviated Journal
Volume 99 Issue 1 Pages 110-125
Keywords Contour completion; Functional extension; Differential operators; Riemmanian manifolds; Snake segmentation
Abstract Anisotropic differential operators are widely used in image enhancement processes. Recently, their property of smoothly extending functions to the whole image domain has begun to be exploited. Strong ellipticity of differential operators is a requirement that ensures existence of a unique solution. This condition is too restrictive for operators designed to extend image level sets: their own functionality implies that they should restrict to some vector field. The diffusion tensor that defines the diffusion operator links anisotropic processes with Riemmanian manifolds. In this context, degeneracy implies restricting diffusion to the varieties generated by the vector fields of positive eigenvalues, provided that an integrability condition is satisfied. We will use that any smooth vector field fulfills this integrability requirement to design line connection algorithms for contour completion. As application we present a segmenting strategy that assures convergent snakes whatever the geometry of the object to be modelled is.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-3142 ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ GIR2005 Serial 1530
Permanent link to this record
 

 
Author Miquel Ferrer; Dimosthenis Karatzas; Ernest Valveny; I. Bardaji; Horst Bunke
Title A Generic Framework for Median Graph Computation based on a Recursive Embedding Approach Type Journal Article
Year 2011 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 115 Issue 7 Pages 919-928
Keywords Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
Abstract The median graph has been shown to be a good choice to obtain a represen- tative of a set of graphs. However, its computation is a complex problem. Recently, graph embedding into vector spaces has been proposed to obtain approximations of the median graph. The problem with such an approach is how to go from a point in the vector space back to a graph in the graph space. The main contribution of this paper is the generalization of this previ- ous method, proposing a generic recursive procedure that permits to recover the graph corresponding to a point in the vector space, introducing only the amount of approximation inherent to the use of graph matching algorithms. In order to evaluate the proposed method, we compare it with the set me- dian and with the other state-of-the-art embedding-based methods for the median graph computation. The experiments are carried out using four dif- ferent databases (one semi-artificial and three containing real-world data). Results show that with the proposed approach we can obtain better medi- ans, in terms of the sum of distances to the training graphs, than with the previous existing methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number IAM @ iam @ FKV2011 Serial 1831
Permanent link to this record