toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Antonio Hernandez edit  isbn
openurl 
  Title From pixels to gestures: learning visual representations for human analysis in color and depth data sequences Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The visual analysis of humans from images is an important topic of interest due to its relevance to many computer vision applications like pedestrian detection, monitoring and surveillance, human-computer interaction, e-health or content-based image retrieval, among others.

In this dissertation we are interested in learning different visual representations of the human body that are helpful for the visual analysis of humans in images and video sequences. To that end, we analyze both RGB and depth image modalities and address the problem from three different research lines, at different levels of abstraction; from pixels to gestures: human segmentation, human pose estimation and gesture recognition.

First, we show how binary segmentation (object vs. background) of the human body in image sequences is helpful to remove all the background clutter present in the scene. The presented method, based on Graph cuts optimization, enforces spatio-temporal consistency of the produced segmentation masks among consecutive frames. Secondly, we present a framework for multi-label segmentation for obtaining much more detailed segmentation masks: instead of just obtaining a binary representation separating the human body from the background, finer segmentation masks can be obtained separating the different body parts.

At a higher level of abstraction, we aim for a simpler yet descriptive representation of the human body. Human pose estimation methods usually rely on skeletal models of the human body, formed by segments (or rectangles) that represent the body limbs, appropriately connected following the kinematic constraints of the human body. In practice, such skeletal models must fulfill some constraints in order to allow for efficient inference, while actually limiting the expressiveness of the model. In order to cope with this, we introduce a top-down approach for predicting the position of the body parts in the model, using a mid-level part representation based on Poselets.

Finally, we propose a framework for gesture recognition based on the bag of visual words framework. We leverage the benefits of RGB and depth image modalities by combining modality-specific visual vocabularies in a late fusion fashion. A new rotation-variant depth descriptor is presented, yielding better results than other state-of-the-art descriptors. Moreover, spatio-temporal pyramids are used to encode rough spatial and temporal structure. In addition, we present a probabilistic reformulation of Dynamic Time Warping for gesture segmentation in video sequences. A Gaussian-based probabilistic model of a gesture is learnt, implicitly encoding possible deformations in both spatial and time domains.
 
  Address January 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Sergio Escalera;Stan Sclaroff  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-0-2 Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ Her2015 Serial 2576  
Permanent link to this record
 

 
Author Hongxing Gao edit  isbn
openurl 
  Title Focused Structural Document Image Retrieval in Digital Mailroom Applications Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this work, we develop a generic framework that is able to handle the document retrieval problem in various scenarios such as searching for full page matches or retrieving the counterparts for specific document areas, focusing on their structural similarity or letting their visual resemblance to play a dominant role. Based on the spatial indexing technique, we propose to search for matches of local key-region pairs carrying both structural and visual information from the collection while a scheme allowing to adjust the relative contribution of structural and visual similarity is presented.
Based on the fact that the structure of documents is tightly linked with the distance among their elements, we firstly introduce an efficient detector named Distance Transform based Maximally Stable Extremal Regions (DTMSER). We illustrate that this detector is able to efficiently extract the structure of a document image as a dendrogram (hierarchical tree) of multi-scale key-regions that roughly correspond to letters, words and paragraphs. We demonstrate that, without benefiting from the structure information, the key-regions extracted by the DTMSER algorithm achieve better results comparing with state-of-the-art methods while much less amount of key-regions are employed.
We subsequently propose a pair-wise Bag of Words (BoW) framework to efficiently embed the explicit structure extracted by the DTMSER algorithm. We represent each document as a list of key-region pairs that correspond to the edges in the dendrogram where inclusion relationship is encoded. By employing those structural key-region pairs as the pooling elements for generating the histogram of features, the proposed method is able to encode the explicit inclusion relations into a BoW representation. The experimental results illustrate that the pair-wise BoW, powered by the embedded structural information, achieves remarkable improvement over the conventional BoW and spatial pyramidal BoW methods.
To handle various retrieval scenarios in one framework, we propose to directly query a series of key-region pairs, carrying both structure and visual information, from the collection. We introduce the spatial indexing techniques to the document retrieval community to speed up the structural relationship computation for key-region pairs. We firstly test the proposed framework in a full page retrieval scenario where structurally similar matches are expected. In this case, the pair-wise querying method achieves notable improvement over the BoW and spatial pyramidal BoW frameworks. Furthermore, we illustrate that the proposed method is also able to handle focused retrieval situations where the queries are defined as a specific interesting partial areas of the images. We examine our method on two types of focused queries: structure-focused and exact queries. The experimental results show that, the proposed generic framework obtains nearly perfect precision on both types of focused queries while it is the first framework able to tackle structure-focused queries, setting a new state of the art in the field.
Besides, we introduce a line verification method to check the spatial consistency among the matched key-region pairs. We propose a computationally efficient version of line verification through a two step implementation. We first compute tentative localizations of the query and subsequently employ them to divide the matched key-region pairs into several groups, then line verification is performed within each group while more precise bounding boxes are computed. We demonstrate that, comparing with the standard approach (based on RANSAC), the line verification proposed generally achieves much higher recall with slight loss on precision on specific queries.
 
  Address January 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Dimosthenis Karatzas;Marçal Rusiñol  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-0-7 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Gao2015 Serial 2577  
Permanent link to this record
 

 
Author Joost Van de Weijer; Fahad Shahbaz Khan edit   pdf
openurl 
  Title An Overview of Color Name Applications in Computer Vision Type Conference Article
  Year 2015 Publication Computational Color Imaging Workshop Abbreviated Journal  
  Volume Issue Pages  
  Keywords color features; color names; object recognition  
  Abstract In this article we provide an overview of color name applications in computer vision. Color names are linguistic labels which humans use to communicate color. Computational color naming learns a mapping from pixels values to color names. In recent years color names have been applied to a wide variety of computer vision applications, including image classification, object recognition, texture classification, visual tracking and action recognition. Here we provide an overview of these results which show that in general color names outperform photometric invariants as a color representation.  
  Address Saint Etienne; France; March 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIW  
  Notes LAMP; 600.079; 600.068 Approved no  
  Call Number Admin @ si @ WeK2015 Serial 2586  
Permanent link to this record
 

 
Author Wenjuan Gong; Y.Huang; Jordi Gonzalez; Liang Wang edit  openurl
  Title An Effective Solution to Double Counting Problem in Human Pose Estimation Type Miscellaneous
  Year 2015 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords Pose estimation; double counting problem; mix-ture of parts Model  
  Abstract The mixture of parts model has been successfully applied to solve the 2D
human pose estimation problem either as an explicitly trained body part model
or as latent variables for pedestrian detection. Even in the era of massive
applications of deep learning techniques, the mixture of parts model is still
effective in solving certain problems, especially in the case with limited
numbers of training samples. In this paper, we consider using the mixture of
parts model for pose estimation, wherein a tree structure is utilized for
representing relations between connected body parts. This strategy facilitates
training and inferencing of the model but suffers from double counting
problems, where one detected body part is counted twice due to lack of
constrains among unconnected body parts. To solve this problem, we propose a
generalized solution in which various part attributes are captured by multiple
features so as to avoid the double counted problem. Qualitative and
quantitative experimental results on a public available dataset demonstrate the
effectiveness of our proposed method.

An Effective Solution to Double Counting Problem in Human Pose Estimation – ResearchGate. Available from: http://www.researchgate.net/publication/271218491AnEffectiveSolutiontoDoubleCountingProbleminHumanPose_Estimation [accessed Oct 22, 2015].
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.078 Approved no  
  Call Number Admin @ si @ GHG2015 Serial 2590  
Permanent link to this record
 

 
Author Adriana Romero; Nicolas Ballas; Samira Ebrahimi Kahou; Antoine Chassang; Carlo Gatta; Yoshua Bengio edit   pdf
openurl 
  Title FitNets: Hints for Thin Deep Nets Type Conference Article
  Year 2015 Publication 3rd International Conference on Learning Representations ICLR2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords Computer Science ; Learning; Computer Science ;Neural and Evolutionary Computing  
  Abstract While depth tends to improve network performances, it also makes gradient-based training more difficult since deeper networks tend to be more non-linear. The recently proposed knowledge distillation approach is aimed at obtaining small and fast-to-execute models, and it has shown that a student network could imitate the soft output of a larger teacher network or ensemble of networks. In this paper, we extend this idea to allow the training of a student that is deeper and thinner than the teacher, using not only the outputs but also the intermediate representations learned by the teacher as hints to improve the training process and final performance of the student. Because the student intermediate hidden layer will generally be smaller than the teacher's intermediate hidden layer, additional parameters are introduced to map the student hidden layer to the prediction of the teacher hidden layer. This allows one to train deeper students that can generalize better or run faster, a trade-off that is controlled by the chosen student capacity. For example, on CIFAR-10, a deep student network with almost 10.4 times less parameters outperforms a larger, state-of-the-art teacher network.  
  Address San Diego; CA; May 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICLR  
  Notes MILAB Approved no  
  Call Number Admin @ si @ RBK2015 Serial 2593  
Permanent link to this record
 

 
Author C. Alejandro Parraga edit  isbn
openurl 
  Title Perceptual Psychophysics Type Book Chapter
  Year 2015 Publication Biologically-Inspired Computer Vision: Fundamentals and Applications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor G.Cristobal; M.Keil; L.Perrinet  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-527-41264-8 Medium  
  Area Expedition Conference  
  Notes CIC; 600.074 Approved no  
  Call Number Admin @ si @ Par2015 Serial 2600  
Permanent link to this record
 

 
Author Carles Sanchez; Debora Gil; R. Tazi; Jorge Bernal; Y. Ruiz; L. Planas; F. Javier Sanchez; Antoni Rosell edit  openurl
  Title Quasi-real time digital assessment of Central Airway Obstruction Type Conference Article
  Year 2015 Publication 3rd European congress for bronchology and interventional pulmonology ECBIP2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Barcelona; Spain; April 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECBIP  
  Notes IAM; MV; 600.075 Approved no  
  Call Number SGT2015 Serial 2612  
Permanent link to this record
 

 
Author Carles Sanchez; Jorge Bernal; F. Javier Sanchez; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit  openurl
  Title Towards On-line Quantification of Tracheal Stenosis from Videobronchoscopy Type Conference Article
  Year 2015 Publication 6th International Conference on Information Processing in Computer-Assisted Interventions IPCAI2015 Abbreviated Journal  
  Volume 10 Issue 6 Pages 935-945  
  Keywords  
  Abstract PURPOSE:
Lack of objective measurement of tracheal obstruction degree has a negative impact on the chosen treatment prone to lead to unnecessary repeated explorations and other scanners. Accurate computation of tracheal stenosis in videobronchoscopy would constitute a breakthrough for this noninvasive technique and a reduction in operation cost for the public health service.
METHODS:
Stenosis calculation is based on the comparison of the region delimited by the lumen in an obstructed frame and the region delimited by the first visible ring in a healthy frame. We propose a parametric strategy for the extraction of lumen and tracheal ring regions based on models of their geometry and appearance that guide a deformable model. To ensure a systematic applicability, we present a statistical framework to choose optimal parametric values and a strategy to choose the frames that minimize the impact of scope optical distortion.
RESULTS:
Our method has been tested in 40 cases covering different stenosed tracheas. Experiments report a non- clinically relevant [Formula: see text] of discrepancy in the calculated stenotic area and a computational time allowing online implementation in the operating room.
CONCLUSIONS:
Our methodology allows reliable measurements of airway narrowing in the operating room. To fully assess its clinical impact, a prospective clinical trial should be done.
 
  Address Barcelona; Spain; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IPCAI  
  Notes IAM; MV; 600.075 Approved no  
  Call Number Admin @ si @ SBS2015b Serial 2613  
Permanent link to this record
 

 
Author Hanne Kause; Patricia Marquez; Andrea Fuster; Aura Hernandez-Sabate; Luc Florack; Debora Gil; Hans van Assen edit  openurl
  Title Quality Assessment of Optical Flow in Tagging MRI Type Conference Article
  Year 2015 Publication 5th Dutch Bio-Medical Engineering Conference BME2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address The Netherlands; January 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BME  
  Notes IAM; ADAS; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ KMF2015 Serial 2616  
Permanent link to this record
 

 
Author M. Cruz; Cristhian A. Aguilera-Carrasco; Boris X. Vintimilla; Ricardo Toledo; Angel Sappa edit  openurl
  Title Cross-spectral image registration and fusion: an evaluation study Type Conference Article
  Year 2015 Publication 2nd International Conference on Machine Vision and Machine Learning Abbreviated Journal  
  Volume Issue Pages  
  Keywords multispectral imaging; image registration; data fusion; infrared and visible spectra  
  Abstract This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different
spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented.
 
  Address Barcelona; July 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MVML  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ CAV2015 Serial 2629  
Permanent link to this record
 

 
Author Jiaolong Xu edit  isbn
openurl 
  Title Domain Adaptation of Deformable Part-based Models Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract On-board pedestrian detection is crucial for Advanced Driver Assistance Systems
(ADAS). An accurate classi cation is fundamental for vision-based pedestrian detection.
The underlying assumption for learning classi ers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classi ers. However, in practice, there are di erent reasons that can break this constancy assumption. Accordingly, reusing existing classi ers by adapting them from the previous training environment (source domain) to the new testing one (target domain) is an approach with increasing acceptance in the computer vision community. In this thesis we focus on the domain adaptation of deformable part-based models (DPMs) for pedestrian detection. As a prof of concept, we use a computer graphic based synthetic dataset, i.e. a virtual world, as the source domain, and adapt the virtual-world trained DPM detector to various real-world dataset.
We start by exploiting the maximum detection accuracy of the virtual-world
trained DPM. Even though, when operating in various real-world datasets, the virtualworld trained detector still su er from accuracy degradation due to the domain gap of virtual and real worlds. We then focus on domain adaptation of DPM. At the rst step, we consider single source and single target domain adaptation and propose two batch learning methods, namely A-SSVM and SA-SSVM. Later, we further consider leveraging multiple target (sub-)domains for progressive domain adaptation and propose a hierarchical adaptive structured SVM (HA-SSVM) for optimization. Finally, we extend HA-SSVM for the challenging online domain adaptation problem, aiming at making the detector to automatically adapt to the target domain online, without any human intervention. All of the proposed methods in this thesis do not require
revisiting source domain data. The evaluations are done on the Caltech pedestrian detection benchmark. Results show that SA-SSVM slightly outperforms A-SSVM and avoids accuracy drops as high as 15 points when comparing with a non-adapted detector. The hierarchical model learned by HA-SSVM further boosts the domain adaptation performance. Finally, the online domain adaptation method has demonstrated that it can achieve comparable accuracy to the batch learned models while not requiring manually label target domain examples. Domain adaptation for pedestrian detection is of paramount importance and a relatively unexplored area. We humbly hope the work in this thesis could provide foundations for future work in this area.
 
  Address April 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-1-4 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Xu2015 Serial 2631  
Permanent link to this record
 

 
Author Xavier Otazu; Olivier Penacchio; Xim Cerda-Company edit  openurl
  Title An excitatory-inhibitory firing rate model accounts for brightness induction, colour induction and visual discomfort Type Conference Article
  Year 2015 Publication Barcelona Computational, Cognitive and Systems Neuroscience Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Barcelona; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BARCCSYN  
  Notes NEUROBIT; Approved no  
  Call Number Admin @ si @ OPC2015b Serial 2634  
Permanent link to this record
 

 
Author Victor Campmany; Sergio Silva; Juan Carlos Moure; Antoni Espinosa; David Vazquez; Antonio Lopez edit   pdf
openurl 
  Title GPU-based pedestrian detection for autonomous driving Type Abstract
  Year 2015 Publication Programming and Tunning Massive Parallel Systems Abbreviated Journal PUMPS  
  Volume Issue Pages  
  Keywords Autonomous Driving; ADAS; CUDA; Pedestrian Detection  
  Abstract Pedestrian detection for autonomous driving has gained a lot of prominence during the last few years. Besides the fact that it is one of the hardest tasks within computer vision, it involves huge computational costs. The real-time constraints in the field are tight, and regular processors are not able to handle the workload obtaining an acceptable ratio of frames per second (fps). Moreover, multiple cameras are required to obtain accurate results, so the need to speed up the process is even higher. Taking the work in [1] as our baseline, we propose a CUDA implementation of a pedestrian detection system. Further, we introduce significant algorithmic adjustments and optimizations to adapt the problem to the GPU architecture. The aim is to provide a system capable of running in real-time obtaining reliable results.  
  Address Barcelona; Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title PUMPS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PUMPS  
  Notes ADAS; 600.076; 600.082; 600.085 Approved no  
  Call Number ADAS @ adas @ CSM2015 Serial 2644  
Permanent link to this record
 

 
Author Sergio Silva; Victor Campmany; Laura Sellart; Juan Carlos Moure; Antoni Espinosa; David Vazquez; Antonio Lopez edit   pdf
openurl 
  Title Autonomous GPU-based Driving Type Abstract
  Year 2015 Publication Programming and Tunning Massive Parallel Systems Abbreviated Journal PUMPS  
  Volume Issue Pages  
  Keywords Autonomous Driving; ADAS; CUDA  
  Abstract Human factors cause most driving accidents; this is why nowadays is common to hear about autonomous driving as an alternative. Autonomous driving will not only increase safety, but also will develop a system of cooperative self-driving cars that will reduce pollution and congestion. Furthermore, it will provide more freedom to handicapped people, elderly or kids.

Autonomous Driving requires perceiving and understanding the vehicle environment (e.g., road, traffic signs, pedestrians, vehicles) using sensors (e.g., cameras, lidars, sonars, and radars), selflocalization (requiring GPS, inertial sensors and visual localization in precise maps), controlling the vehicle and planning the routes. These algorithms require high computation capability, and thanks to NVIDIA GPU acceleration this starts to become feasible.

NVIDIA® is developing a new platform for boosting the Autonomous Driving capabilities that is able of managing the vehicle via CAN-Bus: the Drive™ PX. It has 8 ARM cores with dual accelerated Tegra® X1 chips. It has 12 synchronized camera inputs for 360º vehicle perception, 4G and Wi-Fi capabilities allowing vehicle communications and GPS and inertial sensors inputs for self-localization.

Our research group has been selected for testing Drive™ PX. Accordingly, we are developing a Drive™ PX based autonomous car. Currently, we are porting our previous CPU based algorithms (e.g., Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, or Semantic Segmentation) for running in the GPU.
 
  Address Barcelona; Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PUMPS  
  Notes ADAS; 600.076; 600.082; 600.085 Approved no  
  Call Number ADAS @ adas @ SCS2015 Serial 2645  
Permanent link to this record
 

 
Author Huamin Ren; Weifeng Liu; Soren Ingvor Olsen; Sergio Escalera; Thomas B. Moeslund edit   pdf
openurl 
  Title Unsupervised Behavior-Specific Dictionary Learning for Abnormal Event Detection Type Conference Article
  Year 2015 Publication 26th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Swansea; uk; September 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ RLO2015 Serial 2658  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: