|   | 
Details
   web
Records
Author Akshita Gupta; Sanath Narayan; Salman Khan; Fahad Shahbaz Khan; Ling Shao; Joost Van de Weijer
Title Generative Multi-Label Zero-Shot Learning Type (down) Journal Article
Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 45 Issue 12 Pages 14611-14624
Keywords Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis
Abstract Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.
Address December 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; PID2021-128178OB-I00 Approved no
Call Number Admin @ si @ Serial 3853
Permanent link to this record
 

 
Author Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco
Title Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings Type (down) Journal Article
Year 2023 Publication International Journal of Advanced Computer Science and Applications Abbreviated Journal IJACSA
Volume 14 Issue 5 Pages 1067-1074
Keywords Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention
Abstract According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number Admin @ si @ Serial 3856
Permanent link to this record
 

 
Author M. Altillawi; S. Li; S.M. Prakhya; Z. Liu; Joan Serrat
Title Implicit Learning of Scene Geometry From Poses for Global Localization Type (down) Journal Article
Year 2024 Publication IEEE Robotics and Automation Letters Abbreviated Journal ROBOTAUTOMLET
Volume 9 Issue 2 Pages 955-962
Keywords Localization; Localization and mapping; Deep learning for visual perception; Visual learning
Abstract Global visual localization estimates the absolute pose of a camera using a single image, in a previously mapped area. Obtaining the pose from a single image enables many robotics and augmented/virtual reality applications. Inspired by latest advances in deep learning, many existing approaches directly learn and regress 6 DoF pose from an input image. However, these methods do not fully utilize the underlying scene geometry for pose regression. The challenge in monocular relocalization is the minimal availability of supervised training data, which is just the corresponding 6 DoF poses of the images. In this letter, we propose to utilize these minimal available labels (i.e., poses) to learn the underlying 3D geometry of the scene and use the geometry to estimate the 6 DoF camera pose. We present a learning method that uses these pose labels and rigid alignment to learn two 3D geometric representations ( X, Y, Z coordinates ) of the scene, one in camera coordinate frame and the other in global coordinate frame. Given a single image, it estimates these two 3D scene representations, which are then aligned to estimate a pose that matches the pose label. This formulation allows for the active inclusion of additional learning constraints to minimize 3D alignment errors between the two 3D scene representations, and 2D re-projection errors between the 3D global scene representation and 2D image pixels, resulting in improved localization accuracy. During inference, our model estimates the 3D scene geometry in camera and global frames and aligns them rigidly to obtain pose in real-time. We evaluate our work on three common visual localization datasets, conduct ablation studies, and show that our method exceeds state-of-the-art regression methods' pose accuracy on all datasets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2377-3766 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Serial 3857
Permanent link to this record
 

 
Author P. Canals; Simone Balocco; O. Diaz; J. Li; A. Garcia Tornel; M. Olive Gadea; M. Ribo
Title A fully automatic method for vascular tortuosity feature extraction in the supra-aortic region: unraveling possibilities in stroke treatment planning Type (down) Journal Article
Year 2023 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG
Volume 104 Issue 102170 Pages
Keywords Artificial intelligence; Deep learning; Stroke; Thrombectomy; Vascular feature extraction; Vascular tortuosity
Abstract Vascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke patients (aged 74.8 ± 12.9, 51.0% females) were used for training, validation and testing of a segmentation module based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases). Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements obtained through automatic processing were compared to manual annotations from two observers for a thorough validation of the method. The proposed feature extraction method presented similar performance to the inter-rater variability observed in the measurement of 33 geometrical and morphological features of the arterial anatomy in the supra-aortic region. This system will contribute to the development of more complex models to advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the vascular tortuosity characterization of patients.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ CBD2023 Serial 4005
Permanent link to this record
 

 
Author Parichehr Behjati; Pau Rodriguez; Carles Fernandez; Isabelle Hupont; Armin Mehri; Jordi Gonzalez
Title Single image super-resolution based on directional variance attention network Type (down) Journal Article
Year 2023 Publication Pattern Recognition Abbreviated Journal PR
Volume 133 Issue Pages 108997
Keywords
Abstract Recent advances in single image super-resolution (SISR) explore the power of deep convolutional neural networks (CNNs) to achieve better performance. However, most of the progress has been made by scaling CNN architectures, which usually raise computational demands and memory consumption. This makes modern architectures less applicable in practice. In addition, most CNN-based SR methods do not fully utilize the informative hierarchical features that are helpful for final image recovery. In order to address these issues, we propose a directional variance attention network (DiVANet), a computationally efficient yet accurate network for SISR. Specifically, we introduce a novel directional variance attention (DiVA) mechanism to capture long-range spatial dependencies and exploit inter-channel dependencies simultaneously for more discriminative representations. Furthermore, we propose a residual attention feature group (RAFG) for parallelizing attention and residual block computation. The output of each residual block is linearly fused at the RAFG output to provide access to the whole feature hierarchy. In parallel, DiVA extracts most relevant features from the network for improving the final output and preventing information loss along the successive operations inside the network. Experimental results demonstrate the superiority of DiVANet over the state of the art in several datasets, while maintaining relatively low computation and memory footprint. The code is available at https://github.com/pbehjatii/DiVANet.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ BPF2023 Serial 3861
Permanent link to this record
 

 
Author Wenjuan Gong; Yue Zhang; Wei Wang; Peng Cheng; Jordi Gonzalez
Title Meta-MMFNet: Meta-learning-based Multi-model Fusion Network for Micro-expression Recognition Type (down) Journal Article
Year 2023 Publication ACM Transactions on Multimedia Computing, Communications, and Applications Abbreviated Journal TMCCA
Volume 20 Issue 2 Pages 1–20
Keywords
Abstract Despite its wide applications in criminal investigations and clinical communications with patients suffering from autism, automatic micro-expression recognition remains a challenging problem because of the lack of training data and imbalanced classes problems. In this study, we proposed a meta-learning-based multi-model fusion network (Meta-MMFNet) to solve the existing problems. The proposed method is based on the metric-based meta-learning pipeline, which is specifically designed for few-shot learning and is suitable for model-level fusion. The frame difference and optical flow features were fused, deep features were extracted from the fused feature, and finally in the meta-learning-based framework, weighted sum model fusion method was applied for micro-expression classification. Meta-MMFNet achieved better results than state-of-the-art methods on four datasets. The code is available at https://github.com/wenjgong/meta-fusion-based-method.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ GZW2023 Serial 3862
Permanent link to this record
 

 
Author Wenwen Fu; Zhihong An; Wendong Huang; Haoran Sun; Wenjuan Gong; Jordi Gonzalez
Title A Spatio-Temporal Spotting Network with Sliding Windows for Micro-Expression Detection Type (down) Journal Article
Year 2023 Publication Electronics Abbreviated Journal ELEC
Volume 12 Issue 18 Pages 3947
Keywords micro-expression spotting; sliding window; key frame extraction
Abstract Micro-expressions reveal underlying emotions and are widely applied in political psychology, lie detection, law enforcement and medical care. Micro-expression spotting aims to detect the temporal locations of facial expressions from video sequences and is a crucial task in micro-expression recognition. In this study, the problem of micro-expression spotting is formulated as micro-expression classification per frame. We propose an effective spotting model with sliding windows called the spatio-temporal spotting network. The method involves a sliding window detection mechanism, combines the spatial features from the local key frames and the global temporal features and performs micro-expression spotting. The experiments are conducted on the CAS(ME)2 database and the SAMM Long Videos database, and the results demonstrate that the proposed method outperforms the state-of-the-art method by 30.58% for the CAS(ME)2 and 23.98% for the SAMM Long Videos according to overall F-scores.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ FAH2023 Serial 3864
Permanent link to this record
 

 
Author Luca Ginanni Corradini; Simone Balocco; Luciano Maresca; Silvio Vitale; Matteo Stefanini
Title Anatomical Modifications After Stent Implantation: A Comparative Analysis Between CGuard, Wallstent, and Roadsaver Carotid Stents Type (down) Journal Article
Year 2023 Publication Journal of Endovascular Therapy Abbreviated Journal
Volume 30 Issue 1 Pages 18-24
Keywords Ginanni Corradini L, Balocco S, Maresca L, Vitale S, Stefanini M.
Abstract Abstract
Purpose:
Carotid revascularization can be associated with modifications of the vascular geometry, which may lead to complications. The changes on the vessel angulation before and after a carotid WallStent (WS) implantation are compared against 2 new dual-layer devices, CGuard (CG) and RoadSaver (RS).
Materials and Methods:
The study prospectively recruited 217 consecutive patients (112 GC, 73 WS, and 32 RS, respectively). Angiography projections were explored and the one having a higher arterial angle was selected as a basal view. After stent implantation, a stent control angiography was performed selecting the projection having the maximal angle. The same procedure is followed in all the 3 stent types to guarantee comparable conditions. The angulation changes on the stented segments were quantified from both angiographies. The statistical analysis quantitatively compared the pre-and post-angles for the 3 stent types. The results are qualitatively illustrated using boxplots. Finally, the relation between pre- and post-angles measurements is analyzed using linear regression.
Results:
For CG, no statistical difference in the axial vessel geometry between the basal and postprocedural angles was found. For WS and RS, statistical difference was found between pre- and post-angles. The regression analysis shows that CG induces lower changes from the original curvature with respect to WS and RS.
Conclusion:
Based on our results, CG determines minor changes over the basal morphology than WS and RS stents. Hence, CG respects better the native vessel anatomy than the other stents.
Level of Evidence: Level 4, Case Series.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes xxx Approved no
Call Number Admin @ si @ GBM2023 Serial 4006
Permanent link to this record
 

 
Author Hao Fang; Ajian Liu; Jun Wan; Sergio Escalera; Chenxu Zhao; Xu Zhang; Stan Z Li; Zhen Lei
Title Surveillance Face Anti-spoofing Type (down) Journal Article
Year 2024 Publication IEEE Transactions on Information Forensics and Security Abbreviated Journal TIFS
Volume 19 Issue Pages 1535-1546
Keywords
Abstract Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ FLW2024 Serial 3869
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Luis Herranz; Shangling Jui; Joost Van de Weijer
Title Casting a BAIT for offline and online source-free domain adaptation Type (down) Journal Article
Year 2023 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 234 Issue Pages 103747
Keywords
Abstract We address the source-free domain adaptation (SFDA) problem, where only the source model is available during adaptation to the target domain. We consider two settings: the offline setting where all target data can be visited multiple times (epochs) to arrive at a prediction for each target sample, and the online setting where the target data needs to be directly classified upon arrival. Inspired by diverse classifier based domain adaptation methods, in this paper we introduce a second classifier, but with another classifier head fixed. When adapting to the target domain, the additional classifier initialized from source classifier is expected to find misclassified features. Next, when updating the feature extractor, those features will be pushed towards the right side of the source decision boundary, thus achieving source-free domain adaptation. Experimental results show that the proposed method achieves competitive results for offline SFDA on several benchmark datasets compared with existing DA and SFDA methods, and our method surpasses by a large margin other SFDA methods under online source-free domain adaptation setting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; MACO Approved no
Call Number Admin @ si @ YWH2023 Serial 3874
Permanent link to this record
 

 
Author Chengyi Zou; Shuai Wan; Tiannan Ji; Marc Gorriz Blanch; Marta Mrak; Luis Herranz
Title Chroma Intra Prediction with Lightweight Attention-Based Neural Networks Type (down) Journal Article
Year 2023 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT
Volume 34 Issue 1 Pages 549 - 560
Keywords
Abstract Neural networks can be successfully used for cross-component prediction in video coding. In particular, attention-based architectures are suitable for chroma intra prediction using luma information because of their capability to model relations between difierent channels. However, the complexity of such methods is still very high and should be further reduced, especially for decoding. In this paper, a cost-effective attention-based neural network is designed for chroma intra prediction. Moreover, with the goal of further improving coding performance, a novel approach is introduced to utilize more boundary information effectively. In addition to improving prediction, a simplification methodology is also proposed to reduce inference complexity by simplifying convolutions. The proposed schemes are integrated into H.266/Versatile Video Coding (VVC) pipeline, and only one additional binary block-level syntax flag is introduced to indicate whether a given block makes use of the proposed method. Experimental results demonstrate that the proposed scheme achieves up to −0.46%/−2.29%/−2.17% BD-rate reduction on Y/Cb/Cr components, respectively, compared with H.266/VVC anchor. Reductions in the encoding and decoding complexity of up to 22% and 61%, respectively, are achieved by the proposed scheme with respect to the previous attention-based chroma intra prediction method while maintaining coding performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MACO; LAMP Approved no
Call Number Admin @ si @ ZWJ2023 Serial 3875
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati; Angel Sappa
Title TnTViT-G: Transformer in Transformer Network for Guidance Super Resolution Type (down) Journal Article
Year 2023 Publication IEEE Access Abbreviated Journal ACCESS
Volume 11 Issue Pages 11529-11540
Keywords
Abstract Image Super Resolution is a potential approach that can improve the image quality of low-resolution optical sensors, leading to improved performance in various industrial applications. It is important to emphasize that most state-of-the-art super resolution algorithms often use a single channel of input data for training and inference. However, this practice ignores the fact that the cost of acquiring high-resolution images in various spectral domains can differ a lot from one another. In this paper, we attempt to exploit complementary information from a low-cost channel (visible image) to increase the image quality of an expensive channel (infrared image). We propose a dual stream Transformer-based super resolution approach that uses the visible image as a guide to super-resolve another spectral band image. To this end, we introduce Transformer in Transformer network for Guidance super resolution, named TnTViT-G, an efficient and effective method that extracts the features of input images via different streams and fuses them together at various stages. In addition, unlike other guidance super resolution approaches, TnTViT-G is not limited to a fixed upsample size and it can generate super-resolved images of any size. Extensive experiments on various datasets show that the proposed model outperforms other state-of-the-art super resolution approaches. TnTViT-G surpasses state-of-the-art methods by up to 0.19∼2.3dB , while it is memory efficient.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU Approved no
Call Number Admin @ si @ MBS2023 Serial 3876
Permanent link to this record
 

 
Author Lei Li; Fuping Wu; Sihan Wang; Xinzhe Luo; Carlos Martin-Isla; Shuwei Zhai; Jianpeng Zhang; Yanfei Liu; Zhen Zhang; Markus J. Ankenbrand; Haochuan Jiang; Xiaoran Zhang; Linhong Wang; Tewodros Weldebirhan Arega; Elif Altunok; Zhou Zhao; Feiyan Li; Jun Ma; Xiaoping Yang; Elodie Puybareau; Ilkay Oksuz; Stephanie Bricq; Weisheng Li;Kumaradevan Punithakumar; Sotirios A. Tsaftaris; Laura M. Schreiber; Mingjing Yang; Guocai Liu; Yong Xia; Guotai Wang; Sergio Escalera; Xiahai Zhuag
Title MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images Type (down) Journal Article
Year 2023 Publication Medical Image Analysis Abbreviated Journal MIA
Volume 87 Issue Pages 102808
Keywords
Abstract Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on the myocardium is the key to this assessment. This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS) combining three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. Note that MyoPS refers to both myocardial pathology segmentation and the challenge in this paper. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation. In this article, we provide details of the challenge, survey the works from fifteen participants and interpret their methods according to five aspects, i.e., preprocessing, data augmentation, learning strategy, model architecture and post-processing. In addition, we analyze the results with respect to different factors, in order to examine the key obstacles and explore the potential of solutions, as well as to provide a benchmark for future research. The average Dice scores of submitted algorithms were and for myocardial scars and edema, respectively. We conclude that while promising results have been reported, the research is still in the early stage, and more in-depth exploration is needed before a successful application to the clinics. MyoPS data and evaluation tool continue to be publicly available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ LWW2023a Serial 3878
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera
Title ZS-GR: zero-shot gesture recognition from RGB-D videos Type (down) Journal Article
Year 2023 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 82 Issue Pages 43781-43796
Keywords
Abstract Gesture Recognition (GR) is a challenging research area in computer vision. To tackle the annotation bottleneck in GR, we formulate the problem of Zero-Shot Gesture Recognition (ZS-GR) and propose a two-stream model from two input modalities: RGB and Depth videos. To benefit from the vision Transformer capabilities, we use two vision Transformer models, for human detection and visual features representation. We configure a transformer encoder-decoder architecture, as a fast and accurate human detection model, to overcome the challenges of the current human detection models. Considering the human keypoints, the detected human body is segmented into nine parts. A spatio-temporal representation from human body is obtained using a vision Transformer and a LSTM network. A semantic space maps the visual features to the lingual embedding of the class labels via a Bidirectional Encoder Representations from Transformers (BERT) model. We evaluated the proposed model on five datasets, Montalbano II, MSR Daily Activity 3D, CAD-60, NTU-60, and isoGD obtaining state-of-the-art results compared to state-of-the-art ZS-GR models as well as the Zero-Shot Action Recognition (ZS-AR).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ RKE2023a Serial 3879
Permanent link to this record
 

 
Author Carlos Martin-Isla; Victor M Campello; Cristian Izquierdo; Kaisar Kushibar; Carla Sendra Balcells; Polyxeni Gkontra; Alireza Sojoudi; Mitchell J Fulton; Tewodros Weldebirhan Arega; Kumaradevan Punithakumar; Lei Li; Xiaowu Sun; Yasmina Al Khalil; Di Liu; Sana Jabbar; Sandro Queiros; Francesco Galati; Moona Mazher; Zheyao Gao; Marcel Beetz; Lennart Tautz; Christoforos Galazis; Marta Varela; Markus Hullebrand; Vicente Grau; Xiahai Zhuang; Domenec Puig; Maria A Zuluaga; Hassan Mohy Ud Din; Dimitris Metaxas; Marcel Breeuwer; Rob J van der Geest; Michelle Noga; Stephanie Bricq; Mark E Rentschler; Andrea Guala; Steffen E Petersen; Sergio Escalera; Jose F Rodriguez Palomares; Karim Lekadir
Title Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&ms Challenge Type (down) Journal Article
Year 2023 Publication IEEE Journal of Biomedical and Health Informatics Abbreviated Journal JBHI
Volume 27 Issue 7 Pages 3302-3313
Keywords
Abstract In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ MCI2023 Serial 3880
Permanent link to this record