|   | 
Details
   web
Records
Author David Roche
Title A Statistical Framework for Terminating Evolutionary Algorithms at their Steady State Type (up) Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract As any iterative technique, it is a necessary condition a stop criterion for terminating Evolutionary Algorithms (EA). In the case of optimization methods, the algorithm should stop at the time it has reached a steady state so it can not improve results anymore. Assessing the reliability of termination conditions for EAs is of prime importance. A wrong or weak stop criterion can negatively a ect both the computational e ort and the nal result.
In this Thesis, we introduce a statistical framework for assessing whether a termination condition is able to stop EA at its steady state. In one hand a numeric approximation to steady states to detect the point in which EA population has lost its diversity has been presented for EA termination. This approximation has been applied to di erent EA paradigms based on diversity and a selection of functions covering the properties most relevant for EA convergence. Experiments show that our condition works regardless of the search space dimension and function landscape and Di erential Evolution (DE) arises as the best paradigm. On the other hand, we use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in xspace.
Our theoretical framework is analyzed across several benchmark test functions
and two standard termination criteria based on function improvement in f-space and EA population x-space distribution for the DE paradigm. Results validate our statistical framework as a powerful tool for determining the capability of a measure for terminating EA and select the x-space distribution as the best-suited for accurately stopping DE in real-world applications.
Address July 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Jesus Giraldo
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.075 Approved no
Call Number Admin @ si @ Roc2015 Serial 2686
Permanent link to this record
 

 
Author Patricia Marquez
Title A Confidence Framework for the Assessment of Optical Flow Performance Type (up) Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Optical Flow (OF) is the input of a wide range of decision support systems such as car driver assistance, UAV guiding or medical diagnose. In these real situations, the absence of ground truth forces to assess OF quality using quantities computed from either sequences or the computed optical flow itself. These quantities are generally known as Confidence Measures, CM. Even if we have a proper confidence measure we still need a way to evaluate its ability to discard pixels with an OF prone to have a large error. Current approaches only provide a descriptive evaluation of the CM performance but such approaches are not capable to fairly compare different confidence measures and optical flow algorithms. Thus, it is of prime importance to define a framework and a general road map for the evaluation of optical flow performance.

This thesis provides a framework able to decide which pairs “ optical flow – confidence measure” (OF-CM) are best suited for optical flow error bounding given a confidence level determined by a decision support system. To design this framework we cover the following points:

Descriptive scores. As a first step, we summarize and analyze the sources of inaccuracies in the output of optical flow algorithms. Second, we present several descriptive plots that visually assess CM capabilities for OF error bounding. In addition to the descriptive plots, given a plot representing OF-CM capabilities to bound the error, we provide a numeric score that categorizes the plot according to its decreasing profile, that is, a score assessing CM performance.
Statistical framework. We provide a comparison framework that assesses the best suited OF-CM pair for error bounding that uses a two stage cascade process. First of all we assess the predictive value of the confidence measures by means of a descriptive plot. Then, for a sample of descriptive plots computed over training frames, we obtain a generic curve that will be used for sequences with no ground truth. As a second step, we evaluate the obtained general curve and its capabilities to really reflect the predictive value of a confidence measure using the variability across train frames by means of ANOVA.

The presented framework has shown its potential in the application on clinical decision support systems. In particular, we have analyzed the impact of the different image artifacts such as noise and decay to the output of optical flow in a cardiac diagnose system and we have improved the navigation inside the bronchial tree on bronchoscopy.
Address July 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Aura Hernandez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-2-1 Medium
Area Expedition Conference
Notes IAM; 600.075 Approved no
Call Number Admin @ si @ Mar2015 Serial 2687
Permanent link to this record
 

 
Author Marc Serra
Title Modeling, estimation and evaluation of intrinsic images considering color information Type (up) Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Image values are the result of a combination of visual information coming from multiple sources. Recovering information from the multiple factors thatproduced an image seems a hard and ill-posed problem. However, it is important to observe that humans develop the ability to interpret images and recognize and isolate specific physical properties of the scene.

Images describing a single physical characteristic of an scene are called intrinsic images. These images would benefit most computer vision tasks which are often affected by the multiple complex effects that are usually found in natural images (e.g. cast shadows, specularities, interreflections...).

In this thesis we analyze the problem of intrinsic image estimation from different perspectives, including the theoretical formulation of the problem, the visual cues that can be used to estimate the intrinsic components and the evaluation mechanisms of the problem.
Address September 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Robert Benavente;Olivier Penacchio
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-4-5 Medium
Area Expedition Conference
Notes CIC; 600.074 Approved no
Call Number Admin @ si @ Ser2015 Serial 2688
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate
Title Multi-modal Pedestrian Detection Type (up) Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Pedestrian detection continues to be an extremely challenging problem in real scenarios, in which situations like illumination changes, noisy images, unexpected objects, uncontrolled scenarios and variant appearance of objects occur constantly. All these problems force the development of more robust detectors for relevant applications like vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for behavior analysis. Most reliable vision-based pedestrian detectors base their decision on features extracted using a single sensor capturing complementary features, e.g., appearance, and texture. These features usually are extracted from the current frame, ignoring temporal information, or including it in a post process step e.g., tracking or temporal coherence. Taking into account these issues we formulate the following question: can we generate more robust pedestrian detectors by introducing new information sources in the feature extraction step?
In order to answer this question we develop different approaches for introducing new information sources to well-known pedestrian detectors. We start by the inclusion of temporal information following the Stacked Sequential Learning (SSL) paradigm which suggests that information extracted from the neighboring samples in a sequence can improve the accuracy of a base classifier.
We then focus on the inclusion of complementary information from different sensors like 3D point clouds (LIDAR – depth), far infrared images (FIR), or disparity maps (stereo pair cameras). For this end we develop a multi-modal framework in which information from different sensors is used for increasing detection accuracy (by increasing information redundancy). Finally we propose a multi-view pedestrian detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way the variability problem faced when a single detectors is used for the whole problem. We show that these approaches obtain competitive results with other state-of-the-art methods but instead of design new features, we reuse existing ones boosting their performance.
Address November 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor David Vazquez;Antonio Lopez;
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-7-6 Medium
Area Expedition Conference
Notes ADAS; 600.076 Approved no
Call Number Admin @ si @ Gon2015 Serial 2706
Permanent link to this record
 

 
Author Adriana Romero
Title Assisting the training of deep neural networks with applications to computer vision Type (up) Book Whole
Year 2015 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Deep learning has recently been enjoying an increasing popularity due to its success in solving challenging tasks. In particular, deep learning has proven to be effective in a large variety of computer vision tasks, such as image classification, object recognition and image parsing. Contrary to previous research, which required engineered feature representations, designed by experts, in order to succeed, deep learning attempts to learn representation hierarchies automatically from data. More recently, the trend has been to go deeper with representation hierarchies.
Learning (very) deep representation hierarchies is a challenging task, which
involves the optimization of highly non-convex functions. Therefore, the search
for algorithms to ease the learning of (very) deep representation hierarchies from data is extensive and ongoing.
In this thesis, we tackle the challenging problem of easing the learning of (very) deep representation hierarchies. We present a hyper-parameter free, off-the-shelf, simple and fast unsupervised algorithm to discover hidden structure from the input data by enforcing a very strong form of sparsity. We study the applicability and potential of the algorithm to learn representations of varying depth in a handful of applications and domains, highlighting the ability of the algorithm to provide discriminative feature representations that are able to achieve top performance.
Yet, while emphasizing the great value of unsupervised learning methods when
labeled data is scarce, the recent industrial success of deep learning has revolved around supervised learning. Supervised learning is currently the focus of many recent research advances, which have shown to excel at many computer vision tasks. Top performing systems often involve very large and deep models, which are not well suited for applications with time or memory limitations. More in line with the current trends, we engage in making top performing models more efficient, by designing very deep and thin models. Since training such very deep models still appears to be a challenging task, we introduce a novel algorithm that guides the training of very thin and deep models by hinting their intermediate representations.
Very deep and thin models trained by the proposed algorithm end up extracting feature representations that are comparable or even better performing
than the ones extracted by large state-of-the-art models, while compellingly
reducing the time and memory consumption of the model.
Address October 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Carlo Gatta;Petia Radeva
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ Rom2015 Serial 2707
Permanent link to this record
 

 
Author Sergio Vera
Title Anatomic Registration based on Medial Axis Parametrizations Type (up) Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of di erent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to speci c anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at speci c locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the de nition of a depth coordinate. However, given that di erent methods for generation of medial surfaces generate di erent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference.
Address November 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Miguel Angel Gonzalez Ballester
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-8-3 Medium
Area Expedition Conference
Notes IAM; 600.075 Approved no
Call Number Admin @ si @ Ver2015 Serial 2708
Permanent link to this record
 

 
Author Joan M. Nuñez
Title Vascular Pattern Characterization in Colonoscopy Images Type (up) Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Colorectal cancer is the third most common cancer worldwide and the second most common malignant tumor in Europe. Screening tests have shown to be very e ective in increasing the survival rates since they allow an early detection of polyps. Among the di erent screening techniques, colonoscopy is considered the gold standard although clinical studies mention several problems that have an impact in the quality of the procedure. The navigation through the rectum and colon track can be challenging for the physicians which can increase polyp miss rates. The thorough visualization of the colon track must be ensured so that
the chances of missing lesions are minimized. The visual analysis of colonoscopy images can provide important information to the physicians and support their navigation during the procedure.
Blood vessels and their branching patterns can provide descriptive power to potentially develop biometric markers. Anatomical markers based on blood vessel patterns could be used to identify a particular scene in colonoscopy videos and to support endoscope navigation by generating a sequence of ordered scenes through the di erent colon sections. By verifying the presence of vascular content in the endoluminal scene it is also possible to certify a proper
inspection of the colon mucosa and to improve polyp localization. Considering the potential uses of blood vessel description, this contribution studies the characterization of the vascular content and the analysis of the descriptive power of its branching patterns.
Blood vessel characterization in colonoscopy images is shown to be a challenging task. The endoluminal scene is conformed by several elements whose similar characteristics hinder the development of particular models for each of them. To overcome such diculties we propose the use of the blood vessel branching characteristics as key features for pattern description. We present a model to characterize junctions in binary patterns. The implementation
of the junction model allows us to develop a junction localization method. We
created two data sets including manually labeled vessel information as well as manual ground truths of two types of keypoint landmarks: junctions and endpoints. The proposed method outperforms the available algorithms in the literature in experiments in both, our newly created colon vessel data set, and in DRIVE retinal fundus image data set. In the latter case, we created a manual ground truth of junction coordinates. Since we want to explore the descriptive potential of junctions and vessels, we propose a graph-based approach to
create anatomical markers. In the context of polyp localization, we present a new method to inhibit the in uence of blood vessels in the extraction valley-pro le information. The results show that our methodology decreases vessel in
uence, increases polyp information and leads to an improvement in state-of-the-art polyp localization performance. We also propose a polyp-speci c segmentation method that outperforms other general and speci c approaches.
Address November 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Fernando Vilariño
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-6-9 Medium
Area Expedition Conference
Notes MV Approved no
Call Number Admin @ si @ Nuñ2015 Serial 2709
Permanent link to this record
 

 
Author Victor Ponce
Title Evolutionary Bags of Space-Time Features for Human Analysis Type (up) Book Whole
Year 2016 Publication PhD Thesis Universitat de Barcelona, UOC and CVC Abbreviated Journal
Volume Issue Pages
Keywords Computer algorithms; Digital image processing; Digital video; Analysis of variance; Dynamic programming; Evolutionary computation; Gesture
Abstract The representation (or feature) learning has been an emerging concept in the last years, since it collects a set of techniques that are present in any theoretical or practical methodology referring to artificial intelligence. In computer vision, a very common representation has adopted the form of the well-known Bag of Visual Words. This representation appears implicitly in most approaches where images are described, and is also present in a huge number of areas and domains: image content retrieval, pedestrian detection, human-computer interaction, surveillance, e-health, and social computing, amongst others. The early stages of this dissertation provide an approach for learning visual representations inside evolutionary algorithms, which consists of evolving weighting schemes to improve the BoVW representations for the task of recognizing categories of videos and images. Thus, we demonstrate the applicability of the most common weighting schemes, which are often used in text mining but are less frequently found in computer vision tasks. Beyond learning these visual representations, we provide an approach based on fusion strategies for learning spatiotemporal representations, from multimodal data obtained by depth sensors. Besides, we specially aim at the evolutionary and dynamic modelling, where the temporal factor is present in the nature of the data, such as video sequences of gestures and actions. Indeed, we explore the effects of probabilistic modelling for those approaches based on dynamic programming, so as to handle the temporal deformation and variance amongst video sequences of different categories. Finally, we integrate dynamic programming and generative models into an evolutionary computation framework, with the aim of learning Bags of SubGestures (BoSG) representations and hence to improve the generalization capability of standard gesture recognition approaches. The results obtained in the experimentation demonstrate, first, that evolutionary algorithms are useful for improving the representation of BoVW approaches in several datasets for recognizing categories in still images and video sequences. On the other hand, our experimentation reveals that both, the use of dynamic programming and generative models to align video sequences, and the representations obtained from applying fusion strategies in multimodal data, entail an enhancement on the performance when recognizing some gesture categories. Furthermore, the combination of evolutionary algorithms with models based on dynamic programming and generative approaches results, when aiming at the classification of video categories on large video datasets, in a considerable improvement over standard gesture and action recognition approaches. Finally, we demonstrate the applications of these representations in several domains for human analysis: classification of images where humans may be present, action and gesture recognition for general applications, and in particular for conversational settings within the field of restorative justice
Address June 2016
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Sergio Escalera;Xavier Baro;Hugo Jair Escalante
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA Approved no
Call Number Pon2016 Serial 2814
Permanent link to this record
 

 
Author Simone Balocco; Maria Zuluaga; Guillaume Zahnd; Su-Lin Lee; Stefanie Demirci
Title Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting Type (up) Book Whole
Year 2016 Publication Computing and Visualization for Intravascular Imaging and Computer-Assisted Stenting Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9780128110188 Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ BZZ2016 Serial 2821
Permanent link to this record
 

 
Author German Ros
Title Visual Scene Understanding for Autonomous Vehicles: Understanding Where and What Type (up) Book Whole
Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Making Ground Autonomous Vehicles (GAVs) a reality as a service for the society is one of the major scientific and technological challenges of this century. The potential benefits of autonomous vehicles include reducing accidents, improving traffic congestion and better usage of road infrastructures, among others. These vehicles must operate in our cities, towns and highways, dealing with many different types of situations while respecting traffic rules and protecting human lives. GAVs are expected to deal with all types of scenarios and situations, coping with an uncertain and chaotic world.
Therefore, in order to fulfill these demanding requirements GAVs need to be endowed with the capability of understanding their surrounding at many different levels, by means of affordable sensors and artificial intelligence. This capacity to understand the surroundings and the current situation that the vehicle is involved in is called scene understanding. In this work we investigate novel techniques to bring scene understanding to autonomous vehicles by combining the use of cameras as the main source of information—due to their versatility and affordability—and algorithms based on computer vision and machine learning. We investigate different degrees of understanding of the scene, starting from basic geometric knowledge about where is the vehicle within the scene. A robust and efficient estimation of the vehicle location and pose with respect to a map is one of the most fundamental steps towards autonomous driving. We study this problem from the point of view of robustness and computational efficiency, proposing key insights to improve current solutions. Then we advance to higher levels of abstraction to discover what is in the scene, by recognizing and parsing all the elements present on a driving scene, such as roads, sidewalks, pedestrians, etc. We investigate this problem known as semantic segmentation, proposing new approaches to improve recognition accuracy and computational efficiency. We cover these points by focusing on key aspects such as: (i) how to leverage computation moving semantics to an offline process, (ii) how to train compact architectures based on deconvolutional networks to achieve their maximum potential, (iii) how to use virtual worlds in combination with domain adaptation to produce accurate models in a cost-effective fashion, and (iv) how to use transfer learning techniques to prepare models to new situations. We finally extend the previous level of knowledge enabling systems to reasoning about what has change in a scene with respect to a previous visit, which in return allows for efficient and cost-effective map updating.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa;Julio Guerrero;Antonio Lopez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-1-8 Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Ros2016 Serial 2860
Permanent link to this record
 

 
Author Francisco Cruz
Title Probabilistic Graphical Models for Document Analysis Type (up) Book Whole
Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Latest advances in digitization techniques have fostered the interest in creating digital copies of collections of documents. Digitized documents permit an easy maintenance, loss-less storage, and efficient ways for transmission and to perform information retrieval processes. This situation has opened a new market niche to develop systems able to automatically extract and analyze information contained in these collections, specially in the ambit of the business activity.

Due to the great variety of types of documents this is not a trivial task. For instance, the automatic extraction of numerical data from invoices differs substantially from a task of text recognition in historical documents. However, in order to extract the information of interest, is always necessary to identify the area of the document where it is located. In the area of Document Analysis we refer to this process as layout analysis, which aims at identifying and categorizing the different entities that compose the document, such as text regions, pictures, text lines, or tables, among others. To perform this task it is usually necessary to incorporate a prior knowledge about the task into the analysis process, which can be modeled by defining a set of contextual relations between the different entities of the document. The use of context has proven to be useful to reinforce the recognition process and improve the results on many computer vision tasks. It presents two fundamental questions: What kind of contextual information is appropriate for a given task, and how to incorporate this information into the models.

In this thesis we study several ways to incorporate contextual information to the task of document layout analysis, and to the particular case of handwritten text line segmentation. We focus on the study of Probabilistic Graphical Models and other mechanisms for this purpose, and propose several solutions to these problems. First, we present a method for layout analysis based on Conditional Random Fields. With this model we encode local contextual relations between variables, such as pair-wise constraints. Besides, we encode a set of structural relations between different classes of regions at feature level. Second, we present a method based on 2D-Probabilistic Context-free Grammars to encode structural and hierarchical relations. We perform a comparative study between Probabilistic Graphical Models and this syntactic approach. Third, we propose a method for structured documents based on Bayesian Networks to represent the document structure, and an algorithm based in the Expectation-Maximization to find the best configuration of the page. We perform a thorough evaluation of the proposed methods on two particular collections of documents: a historical collection composed of ancient structured documents, and a collection of contemporary documents. In addition, we present a general method for the task of handwritten text line segmentation. We define a probabilistic framework where we combine the EM algorithm with variational approaches for computing inference and parameter learning on a Markov Random Field. We evaluate our method on several collections of documents, including a general dataset of annotated administrative documents. Results demonstrate the applicability of our method to real problems, and the contribution of the use of contextual information to this kind of problems.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Oriol Ramos Terrades
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-2-5 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Cru2016 Serial 2861
Permanent link to this record
 

 
Author Lluis Gomez
Title Exploiting Similarity Hierarchies for Multi-script Scene Text Understanding Type (up) Book Whole
Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This thesis addresses the problem of automatic scene text understanding in unconstrained conditions. In particular, we tackle the tasks of multi-language and arbitrary-oriented text detection, tracking, and script identification in natural scenes.
For this we have developed a set of generic methods that build on top of the basic observation that text has always certain key visual and structural characteristics that are independent of the language or script in which it is written. Text instances in any
language or script are always formed as groups of similar atomic parts, being them either individual characters, small stroke parts, or even whole words in the case of cursive text. This holistic (sumof-parts) and recursive perspective has lead us to explore different variants of the “segmentation and grouping” paradigm of computer vision.
Scene text detection methodologies are usually based in classification of individual regions or patches, using a priory knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organization through which
text emerges as a perceptually significant group of atomic objects.
In this thesis, we argue that the text detection problem must be posed as the detection of meaningful groups of regions. We address the problem of text detection in natural scenes from a hierarchical perspective, making explicit use of the recursive nature of text, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypothese with high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Within this generic framework, we design a text-specific object proposals algorithm that, contrary to existing generic object proposals methods, aims directly to the detection of text regions groupings. For this, we abandon the rigid definition of “what is text” of traditional specialized text detectors, and move towards more fuzzy perspective of grouping-based object proposals methods.
Then, we present a hybrid algorithm for detection and tracking of scene text where the notion of region groupings plays also a central role. By leveraging the structural arrangement of text group components between consecutive frames we can improve
the overall tracking performance of the system.
Finally, since our generic detection framework is inherently designed for multi-language environments, we focus on the problem of script identification in order to build a multi-language end-toend reading system. Facing this problem with state of the art CNN classifiers is not straightforward, as they fail to address a key
characteristic of scene text instances: their extremely variable aspect ratio. Instead of resizing input images to a fixed size as in the typical use of holistic CNN classifiers, we propose a patch-based classification framework in order to preserve discriminative parts of the image that are characteristic of its class. We describe a novel method based on the use of ensembles of conjoined networks to jointly learn discriminative stroke-parts representations and their relative importance in a patch-based classification scheme.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Dimosthenis Karatzas
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Gom2016 Serial 2891
Permanent link to this record
 

 
Author Jordi Roca
Title Constancy and inconstancy in categorical colour perception Type (up) Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract To recognise objects is perhaps the most important task an autonomous system, either biological or artificial needs to perform. In the context of human vision, this is partly achieved by recognizing the colour of surfaces despite changes in the wavelength distribution of the illumination, a property called colour constancy. Correct surface colour recognition may be adequately accomplished by colour category matching without the need to match colours precisely, therefore categorical colour constancy is likely to play an important role for object identification to be successful. The main aim of this work is to study the relationship between colour constancy and categorical colour perception. Previous studies of colour constancy have shown the influence of factors such the spatio-chromatic properties of the background, individual observer's performance, semantics, etc. However there is very little systematic study of these influences. To this end, we developed a new approach to colour constancy which includes both individual observers' categorical perception, the categorical structure of the background, and their interrelations resulting in a more comprehensive characterization of the phenomenon. In our study, we first developed a new method to analyse the categorical structure of 3D colour space, which allowed us to characterize individual categorical colour perception as well as quantify inter-individual variations in terms of shape and centroid location of 3D categorical regions. Second, we developed a new colour constancy paradigm, termed chromatic setting, which allows measuring the precise location of nine categorically-relevant points in colour space under immersive illumination. Additionally, we derived from these measurements a new colour constancy index which takes into account the magnitude and orientation of the chromatic shift, memory effects and the interrelations among colours and a model of colour naming tuned to each observer/adaptation state. Our results lead to the following conclusions: (1) There exists large inter-individual variations in the categorical structure of colour space, and thus colour naming ability varies significantly but this is not well predicted by low-level chromatic discrimination ability; (2) Analysis of the average colour naming space suggested the need for an additional three basic colour terms (turquoise, lilac and lime) for optimal colour communication; (3) Chromatic setting improved the precision of more complex linear colour constancy models and suggested that mechanisms other than cone gain might be best suited to explain colour constancy; (4) The categorical structure of colour space is broadly stable under illuminant changes for categorically balanced backgrounds; (5) Categorical inconstancy exists for categorically unbalanced backgrounds thus indicating that categorical information perceived in the initial stages of adaptation may constrain further categorical perception.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Maria Vanrell;C. Alejandro Parraga
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ Roc2012 Serial 2893
Permanent link to this record
 

 
Author Antonio Lopez; Atsushi Imiya; Tomas Pajdla; Jose Manuel Alvarez
Title Computer Vision in Vehicle Technology: Land, Sea & Air Type (up) Book Whole
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 161-163
Keywords
Abstract Summary This chapter examines different vision-based commercial solutions for real-live problems related to vehicles. It is worth mentioning the recent astonishing performance of deep convolutional neural networks (DCNNs) in difficult visual tasks such as image classification, object recognition/localization/detection, and semantic segmentation. In fact,
different DCNN architectures are already being explored for low-level tasks such as optical flow and disparity computation, and higher level ones such as place recognition.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-118-86807-2 Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ LIP2017a Serial 2937
Permanent link to this record
 

 
Author Meysam Madadi
Title Human Segmentation, Pose Estimation and Applications Type (up) Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Automatic analyzing humans in photographs or videos has great potential applications in computer vision, including medical diagnosis, sports, entertainment, movie editing and surveillance, just to name a few. Body, face and hand are the most studied components of humans. Body has many variabilities in shape and clothing along with high degrees of freedom in pose. Face has many muscles causing many visible deformity, beside variable shape and hair style. Hand is a small object, moving fast and has high degrees of freedom. Adding human characteristics to all aforementioned variabilities makes human analysis quite a challenging task.
In this thesis, we developed human segmentation in different modalities. In a first scenario, we segmented human body and hand in depth images using example-based shape warping. We developed a shape descriptor based on shape context and class probabilities of shape regions to extract nearest neighbors. We then considered rigid affine alignment vs. nonrigid iterative shape warping. In a second scenario, we segmented face in RGB images using convolutional neural networks (CNN). We modeled conditional random field with recurrent neural networks. In our model pair-wise kernels are not fixed and learned during training. We trained the network end-to-end using adversarial networks which improved hair segmentation by a high margin.
We also worked on 3D hand pose estimation in depth images. In a generative approach, we fitted a finger model separately for each finger based on our example-based rigid hand segmentation. We minimized an energy function based on overlapping area, depth discrepancy and finger collisions. We also applied linear models in joint trajectory space to refine occluded joints based on visible joints error and invisible joints trajectory smoothness. In a CNN-based approach, we developed a tree-structure network to train specific features for each finger and fused them for global pose consistency. We also formulated physical and appearance constraints as loss functions.
Finally, we developed a number of applications consisting of human soft biometrics measurement and garment retexturing. We also generated some datasets in this thesis consisting of human segmentation, synthetic hand pose, garment retexturing and Italian gestures.
Address October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Sergio Escalera;Jordi Gonzalez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-3-2 Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ Mad2017 Serial 3017
Permanent link to this record