|   | 
Details
   web
Records
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez
Title Hierarchical Adaptive Structural SVM for Domain Adaptation Type (up) Journal Article
Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV
Volume 119 Issue 2 Pages 159-178
Keywords Domain Adaptation; Pedestrian Detection
Abstract A key topic in classification is the accuracy loss produced when the data distribution in the training (source) domain differs from that in the testing (target) domain. This is being recognized as a very relevant problem for many
computer vision tasks such as image classification, object detection, and object category recognition. In this paper, we present a novel domain adaptation method that leverages multiple target domains (or sub-domains) in a hierarchical adaptation tree. The core idea is to exploit the commonalities and differences of the jointly considered target domains.
Given the relevance of structural SVM (SSVM) classifiers, we apply our idea to the adaptive SSVM (A-SSVM), which only requires the target domain samples together with the existing source-domain classifier for performing the desired adaptation. Altogether, we term our proposal as hierarchical A-SSVM (HA-SSVM).
As proof of concept we use HA-SSVM for pedestrian detection, object category recognition and face recognition. In the former we apply HA-SSVM to the deformable partbased model (DPM) while in the rest HA-SSVM is applied to multi-category classifiers. We will show how HA-SSVM is effective in increasing the detection/recognition accuracy with respect to adaptation strategies that ignore the structure of the target data. Since, the sub-domains of the target data are not always known a priori, we shown how HA-SSVM can incorporate sub-domain discovery for object category recognition.
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5691 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.082; 600.076 Approved no
Call Number Admin @ si @ XRV2016 Serial 2669
Permanent link to this record
 

 
Author G.Blasco; Simone Balocco; J.Puig; J.Sanchez-Gonzalez; W.Ricart; J.Daunis-I-Estadella; X.Molina; S.Pedraza; J.M.Fernandez-Real
Title Carotid pulse wave velocity by magnetic resonance imaging is increased in middle-aged subjects with the metabolic syndrome Type (up) Journal Article
Year 2015 Publication International Journal of Cardiovascular Imaging Abbreviated Journal ICJI
Volume 31 Issue 3 Pages 603-612
Keywords Metabolic syndrome; Arterial stiffness; Pulse wave velocity; Carotid artery; Magnetic resonance
Abstract Arterial pulse wave velocity (PWV), an independent predictor of cardiovascular disease, physiologically increases with age; however, growing evidence suggests metabolic syndrome (MetS) accelerates this increase. Magnetic resonance imaging (MRI) enables reliable noninvasive assessment of arterial stiffness by measuring arterial PWV in specific vascular segments. We investigated the association between the presence of MetS and its components with carotid PWV (cPWV) in asymptomatic subjects without diabetes. We assessed cPWV by MRI in 61 individuals (mean age, 55.3 ± 14.1 years; median age, 55 years): 30 with MetS and 31 controls with similar age, sex, body mass index, and LDL-cholesterol levels. The study population was dichotomized by the median age. To remove the physiological association between PWV and age, unpaired t tests and multiple regression analyses were performed using the residuals of the regression between PWV and age. cPWV was higher in middle-aged subjects with MetS than in those without (p = 0.001), but no differences were found in elder subjects (p = 0.313). cPWV was associated with diastolic blood pressure (r = 0.276, p = 0.033) and waist circumference (r = 0.268, p = 0.038). The presence of MetS was associated with increased cPWV regardless of age, sex, blood pressure, and waist (p = 0.007). The MetS components contributing independently to an increased cPWV were hypertension (p = 0.018) and hypertriglyceridemia (p = 0.002). The presence of MetS is associated with an increased cPWV in middle-aged subjects. In particular, hypertension and hypertriglyceridemia may contribute to early progression of carotid stiffness.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-5794 ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ BBP2015 Serial 2670
Permanent link to this record
 

 
Author Lluis Garrido; M.Guerrieri; Laura Igual
Title Image Segmentation with Cage Active Contours Type (up) Journal Article
Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 24 Issue 12 Pages 5557 - 5566
Keywords Level sets; Mean value coordinates; Parametrized active contours; level sets; mean value coordinates
Abstract In this paper, we present a framework for image segmentation based on parametrized active contours. The evolving contour is parametrized according to a reduced set of control points that form a closed polygon and have a clear visual interpretation. The parametrization, called mean value coordinates, stems from the techniques used in computer graphics to animate virtual models. Our framework allows to easily formulate region-based energies to segment an image. In particular, we present three different local region-based energy terms: 1) the mean model; 2) the Gaussian model; 3) and the histogram model. We show the behavior of our method on synthetic and real images and compare the performance with state-of-the-art level set methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ GGI2015 Serial 2673
Permanent link to this record
 

 
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados
Title A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting Type (up) Journal Article
Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR
Volume 18 Issue 3 Pages 223-234
Keywords Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation
Abstract The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-2833 ISBN Medium
Area Expedition Conference
Notes DAG; ADAS; 600.055; 600.061; 601.223; 600.077; 600.097 Approved no
Call Number Admin @ si @ ART2015 Serial 2679
Permanent link to this record
 

 
Author L. Calvet; A. Ferrer; M. Gomes; A. Juan; David Masip
Title Combining Statistical Learning with Metaheuristics for the Multi-Depot Vehicle Routing Problem with Market Segmentation Type (up) Journal Article
Year 2016 Publication Computers & Industrial Engineering Abbreviated Journal CIE
Volume 94 Issue Pages 93-104
Keywords Multi-Depot Vehicle Routing Problem; market segmentation applications; hybrid algorithms; statistical learning
Abstract In real-life logistics and distribution activities it is usual to face situations in which the distribution of goods has to be made from multiple warehouses or depots to the nal customers. This problem is known as the Multi-Depot Vehicle Routing Problem (MDVRP), and it typically includes two sequential and correlated stages: (a) the assignment map of customers to depots, and (b) the corresponding design of the distribution routes. Most of the existing work in the literature has focused on minimizing distance-based distribution costs while satisfying a number of capacity constraints. However, no attention has been given so far to potential variations in demands due to the tness of the customerdepot mapping in the case of heterogeneous depots. In this paper, we consider this realistic version of the problem in which the depots are heterogeneous in terms of their commercial o er and customers show di erent willingness to consume depending on how well the assigned depot ts their preferences. Thus, we assume that di erent customer-depot assignment maps will lead to di erent customer-expenditure levels. As a consequence, market-segmentation strategiesneed to be considered in order to increase sales and total income while accounting for the distribution costs. To solve this extension of the MDVRP, we propose a hybrid approach that combines statistical learning techniques with a metaheuristic framework. First, a set of predictive models is generated from historical data. These statistical models allow estimating the demand of any customer depending on the assigned depot. Then, the estimated expenditure of each customer is included as part of an enriched objective function as a way to better guide the stochastic local search inside the metaheuristic framework. A set of computational experiments contribute to illustrate our approach and how the extended MDVRP considered here di ers in terms of the proposed solutions from the traditional one.
Address
Corporate Author Thesis
Publisher PERGAMON-ELSEVIER SCIENCE LTD Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title CIE
Series Volume Series Issue Edition
ISSN 0360-8352 ISBN Medium
Area Expedition Conference
Notes OR;MV; Approved no
Call Number Admin @ si @ CFG2016 Serial 2749
Permanent link to this record
 

 
Author Tadashi Araki; Sumit K. Banchhor; Narendra D. Londhe; Nobutaka Ikeda; Petia Radeva; Devarshi Shukla; Luca Saba; Antonella Balestrieri; Andrew Nicolaides; Shoaib Shafique; John R. Laird; Jasjit S. Suri
Title Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos Type (up) Journal Article
Year 2016 Publication Journal of Medical Systems Abbreviated Journal JMS
Volume 40 Issue 3 Pages 51:1-51:20
Keywords Interventional cardiology; Atherosclerosis; Coronary arteries; IVUS; calcium volume; Soft computing; Performance Reliability; Accuracy
Abstract Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm3, 27.79 ± 10.94 mm3, 46.44 ± 19.13 mm3 and 35.92 ± 16.44 mm3 respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student’s t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80 %. Out procedure and protocol is along the line with method previously published clinically.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number Admin @ si @ ABL2016 Serial 2729
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer
Title Global Color Sparseness and a Local Statistics Prior for Fast Bilateral Filtering Type (up) Journal Article
Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 24 Issue 12 Pages 5842-5853
Keywords
Abstract The property of smoothing while preserving edges makes the bilateral filter a very popular image processing tool. However, its non-linear nature results in a computationally costly operation. Various works propose fast approximations to the bilateral filter. However, the majority does not generalize to vector input as is the case with color images. We propose a fast approximation to the bilateral filter for color images. The filter is based on two ideas. First, the number of colors, which occur in a single natural image, is limited. We exploit this color sparseness to rewrite the initial non-linear bilateral filter as a number of linear filter operations. Second, we impose a statistical prior to the image values that are locally present within the filter window. We show that this statistical prior leads to a closed-form solution of the bilateral filter. Finally, we combine both ideas into a single fast and accurate bilateral filter for color images. Experimental results show that our bilateral filter based on the local prior yields an extremely fast bilateral filter approximation, but with limited accuracy, which has potential application in real-time video filtering. Our bilateral filter, which combines color sparseness and local statistics, yields a fast and accurate bilateral filter approximation and obtains the state-of-the-art results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes LAMP; 600.079;ISE Approved no
Call Number Admin @ si @ MoW2015b Serial 2689
Permanent link to this record
 

 
Author Ivan Huerta; Michael Holte; Thomas B. Moeslund; Jordi Gonzalez
Title Chromatic shadow detection and tracking for moving foreground segmentation Type (up) Journal Article
Year 2015 Publication Image and Vision Computing Abbreviated Journal IMAVIS
Volume 41 Issue Pages 42-53
Keywords Detecting moving objects; Chromatic shadow detection; Temporal local gradient; Spatial and Temporal brightness and angle distortions; Shadow tracking
Abstract Advanced segmentation techniques in the surveillance domain deal with shadows to avoid distortions when detecting moving objects. Most approaches for shadow detection are still typically restricted to penumbra shadows and cannot cope well with umbra shadows. Consequently, umbra shadow regions are usually detected as part of moving objects, thus a ecting the performance of the nal detection. In this paper we address the detection of both penumbra and umbra shadow regions. First, a novel bottom-up approach is presented based on gradient and colour models, which successfully discriminates between chromatic moving cast shadow regions and those regions detected as moving objects. In essence, those regions corresponding to potential shadows are detected based on edge partitioning and colour statistics. Subsequently (i) temporal similarities between textures and (ii) spatial similarities between chrominance angle and brightness distortions are analysed for each potential shadow region for detecting the umbra shadow regions. Our second contribution re nes even further the segmentation results: a tracking-based top-down approach increases the performance of our bottom-up chromatic shadow detection algorithm by properly correcting non-detected shadows.
To do so, a combination of motion lters in a data association framework exploits the temporal consistency between objects and shadows to increase
the shadow detection rate. Experimental results exceed current state-of-the-
art in shadow accuracy for multiple well-known surveillance image databases which contain di erent shadowed materials and illumination conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.078; 600.063 Approved no
Call Number Admin @ si @ HHM2015 Serial 2703
Permanent link to this record
 

 
Author Josep M. Gonfaus; Marco Pedersoli; Jordi Gonzalez; Andrea Vedaldi; Xavier Roca
Title Factorized appearances for object detection Type (up) Journal Article
Year 2015 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 138 Issue Pages 92–101
Keywords Object recognition; Deformable part models; Learning and sharing parts; Discovering discriminative parts
Abstract Deformable object models capture variations in an object’s appearance that can be represented as image deformations. Other effects such as out-of-plane rotations, three-dimensional articulations, and self-occlusions are often captured by considering mixture of deformable models, one per object aspect. A more scalable approach is representing instead the variations at the level of the object parts, applying the concept of a mixture locally. Combining a few part variations can in fact cheaply generate a large number of global appearances.

A limited version of this idea was proposed by Yang and Ramanan [1], for human pose dectection. In this paper we apply it to the task of generic object category detection and extend it in several ways. First, we propose a model for the relationship between part appearances more general than the tree of Yang and Ramanan [1], which is more suitable for generic categories. Second, we treat part locations as well as their appearance as latent variables so that training does not need part annotations but only the object bounding boxes. Third, we modify the weakly-supervised learning of Felzenszwalb et al. and Girshick et al. [2], [3] to handle a significantly more complex latent structure.
Our model is evaluated on standard object detection benchmarks and is found to improve over existing approaches, yielding state-of-the-art results for several object categories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.063; 600.078 Approved no
Call Number Admin @ si @ GPG2015 Serial 2705
Permanent link to this record
 

 
Author Jean-Pascal Jacob; Mariella Dimiccoli; Lionel Moisan
Title Active skeleton for bacteria modeling Type (up) Journal Article
Year 2016 Publication Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization Abbreviated Journal CMBBE
Volume 5 Issue 4 Pages 274-286
Keywords Bacteria modelling; medial axis; active contours; active skeleton; shape contraints
Abstract The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modeling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness, orientation), an improved boundary accuracy in noisy images, and a natural bacteria-centered coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimizing an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modeling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at this http URL
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ JDM2016 Serial 2711
Permanent link to this record
 

 
Author Marc Bolaños; Mariella Dimiccoli; Petia Radeva
Title Towards Storytelling from Visual Lifelogging: An Overview Type (up) Journal Article
Year 2017 Publication IEEE Transactions on Human-Machine Systems Abbreviated Journal THMS
Volume 47 Issue 1 Pages 77 - 90
Keywords
Abstract Visual lifelogging consists of acquiring images that capture the daily experiences of the user by wearing a camera over a long period of time. The pictures taken offer considerable potential for knowledge mining concerning how people live their lives, hence, they open up new opportunities for many potential applications in fields including healthcare, security, leisure and
the quantified self. However, automatically building a story from a huge collection of unstructured egocentric data presents major challenges. This paper provides a thorough review of advances made so far in egocentric data analysis, and in view of the current state of the art, indicates new lines of research to move us towards storytelling from visual lifelogging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; 601.235 Approved no
Call Number Admin @ si @ BDR2017 Serial 2712
Permanent link to this record
 

 
Author Mariella Dimiccoli; Marc Bolaños; Estefania Talavera; Maedeh Aghaei; Stavri G. Nikolov; Petia Radeva
Title SR-Clustering: Semantic Regularized Clustering for Egocentric Photo Streams Segmentation Type (up) Journal Article
Year 2017 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 155 Issue Pages 55-69
Keywords
Abstract While wearable cameras are becoming increasingly popular, locating relevant information in large unstructured collections of egocentric images is still a tedious and time consuming processes. This paper addresses the problem of organizing egocentric photo streams acquired by a wearable camera into semantically meaningful segments. First, contextual and semantic information is extracted for each image by employing a Convolutional Neural Networks approach. Later, by integrating language processing, a vocabulary of concepts is defined in a semantic space. Finally, by exploiting the temporal coherence in photo streams, images which share contextual and semantic attributes are grouped together. The resulting temporal segmentation is particularly suited for further analysis, ranging from activity and event recognition to semantic indexing and summarization. Experiments over egocentric sets of nearly 17,000 images, show that the proposed approach outperforms state-of-the-art methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; 601.235 Approved no
Call Number Admin @ si @ DBT2017 Serial 2714
Permanent link to this record
 

 
Author Ciprian Corneanu; Marc Oliu; Jeffrey F. Cohn; Sergio Escalera
Title Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History Type (up) Journal Article
Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 28 Issue 8 Pages 1548-1568
Keywords Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal
Abstract Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ COC2016 Serial 2718
Permanent link to this record
 

 
Author Antonio Hernandez; Sergio Escalera; Stan Sclaroff
Title Poselet-basedContextual Rescoring for Human Pose Estimation via Pictorial Structures Type (up) Journal Article
Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV
Volume 118 Issue 1 Pages 49–64
Keywords Contextual rescoring; Poselets; Human pose estimation
Abstract In this paper we propose a contextual rescoring method for predicting the position of body parts in a human pose estimation framework. A set of poselets is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body part hypotheses. A method is proposed for the automatic discovery of a compact subset of poselets that covers the different poses in a set of validation images while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for each body joint detection, given its relationship to detections of other body joints and mid-level parts in the image. This new score is incorporated in the pictorial structure model as an additional unary potential, following the recent work of Pishchulin et al. Experiments on two benchmarks show comparable results to Pishchulin et al. while reducing the size of the mid-level representation by an order of magnitude, reducing the execution time by 68 % accordingly.
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5691 ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ HES2016 Serial 2719
Permanent link to this record
 

 
Author Juan Ramon Terven Salinas; Bogdan Raducanu; Maria Elena Meza de Luna; Joaquin Salas
Title Head-gestures mirroring detection in dyadic social linteractions with computer vision-based wearable devices Type (up) Journal Article
Year 2016 Publication Neurocomputing Abbreviated Journal NEUCOM
Volume 175 Issue B Pages 866–876
Keywords Head gestures recognition; Mirroring detection; Dyadic social interaction analysis; Wearable devices
Abstract During face-to-face human interaction, nonverbal communication plays a fundamental role. A relevant aspect that takes part during social interactions is represented by mirroring, in which a person tends to mimic the non-verbal behavior (head and body gestures, vocal prosody, etc.) of the counterpart. In this paper, we introduce a computer vision-based system to detect mirroring in dyadic social interactions with the use of a wearable platform. In our context, mirroring is inferred as simultaneous head noddings displayed by the interlocutors. Our approach consists of the following steps: (1) facial features extraction; (2) facial features stabilization; (3) head nodding recognition; and (4) mirroring detection. Our system achieves a mirroring detection accuracy of 72% on a custom mirroring dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR; 600.072; 600.068;MV Approved no
Call Number Admin @ si @ TRM2016 Serial 2721
Permanent link to this record