Justine Giroux, Mohammad Reza Karimi Dastjerdi, Yannick Hold-Geoffroy, Javier Vazquez, & Jean François Lalonde. (2024). Towards a Perceptual Evaluation Framework for Lighting Estimation. In Arxiv.
Abstract: rogress in lighting estimation is tracked by computing existing image quality assessment (IQA) metrics on images from standard datasets. While this may appear to be a reasonable approach, we demonstrate that doing so does not correlate to human preference when the estimated lighting is used to relight a virtual scene into a real photograph. To study this, we design a controlled psychophysical experiment where human observers must choose their preference amongst rendered scenes lit using a set of lighting estimation algorithms selected from the recent literature, and use it to analyse how these algorithms perform according to human perception. Then, we demonstrate that none of the most popular IQA metrics from the literature, taken individually, correctly represent human perception. Finally, we show that by learning a combination of existing IQA metrics, we can more accurately represent human preference. This provides a new perceptual framework to help evaluate future lighting estimation algorithms.
|
|
Mohamed Ramzy Ibrahim, Robert Benavente, Daniel Ponsa, & Felipe Lumbreras. (2024). SWViT-RRDB: Shifted Window Vision Transformer Integrating Residual in Residual Dense Block for Remote Sensing Super-Resolution. In 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Abstract: Remote sensing applications, impacted by acquisition season and sensor variety, require high-resolution images. Transformer-based models improve satellite image super-resolution but are less effective than convolutional neural networks (CNNs) at extracting local details, crucial for image clarity. This paper introduces SWViT-RRDB, a new deep learning model for satellite imagery super-resolution. The SWViT-RRDB, combining transformer with convolution and attention blocks, overcomes the limitations of existing models by better representing small objects in satellite images. In this model, a pipeline of residual fusion group (RFG) blocks is used to combine the multi-headed self-attention (MSA) with residual in residual dense block (RRDB). This combines global and local image data for better super-resolution. Additionally, an overlapping cross-attention block (OCAB) is used to enhance fusion and allow interaction between neighboring pixels to maintain long-range pixel dependencies across the image. The SWViT-RRDB model and its larger variants outperform state-of-the-art (SoTA) models on two different satellite datasets in terms of PSNR and SSIM.
|
|
Mohamed Ramzy Ibrahim, Robert Benavente, Daniel Ponsa, & Felipe Lumbreras. (2023). Unveiling the Influence of Image Super-Resolution on Aerial Scene Classification. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (Vol. 14469, 214–228). LNCS.
Abstract: Deep learning has made significant advances in recent years, and as a result, it is now in a stage where it can achieve outstanding results in tasks requiring visual understanding of scenes. However, its performance tends to decline when dealing with low-quality images. The advent of super-resolution (SR) techniques has started to have an impact on the field of remote sensing by enabling the restoration of fine details and enhancing image quality, which could help to increase performance in other vision tasks. However, in previous works, contradictory results for scene visual understanding were achieved when SR techniques were applied. In this paper, we present an experimental study on the impact of SR on enhancing aerial scene classification. Through the analysis of different state-of-the-art SR algorithms, including traditional methods and deep learning-based approaches, we unveil the transformative potential of SR in overcoming the limitations of low-resolution (LR) aerial imagery. By enhancing spatial resolution, more fine details are captured, opening the door for an improvement in scene understanding. We also discuss the effect of different image scales on the quality of SR and its effect on aerial scene classification. Our experimental work demonstrates the significant impact of SR on enhancing aerial scene classification compared to LR images, opening new avenues for improved remote sensing applications.
|
|
Xavier Otazu, M. Ribo, M. Peracaula, J.M. Paredes, & J. Nuñez. (2002). Detection of superimposed periodic signals using wavelets. Monthly Notices of the Royal Astronomical Society, 333, 2: 365–372 (IF: 4.671).
|
|
Xavier Otazu, M. Ribo, J.M. Paredes, M. Peracaula, & J. Nuñez. (2004). Multiresolution approach for period determination on unevenly sampled data. Monthly Notices of the Royal Astronomical Society, 351:251–219 (IF: 5.238).
|
|
Maria Vanrell, Ramon Baldrich, Anna Salvatella, Robert Benavente, & Francesc Tous. (2004). Induction operators for a computational colour-texture representation. Computer Vision and Image Understanding, 94(1–3):92–114, ISSN: 1077–3142 (IF: 0.651).
|
|
Robert Benavente, Maria Vanrell, & Ramon Baldrich. (2004). Estimation of Fuzzy Sets for Computational Colour Categorization. Color Research and Application, 29(5):342–353 (IF: 0.739).
|
|
M. Gonzalez-Audicana, Xavier Otazu, O. Fors, & A. Seco. (2005). Comparison between Mallats and the trous discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images. International Journal of Remote Sensing, 26(3):595–614 (IF: 0.925).
|
|
Xavier Otazu, & Maria Vanrell. (2005). Perceptual representation of textured images. Journal of Imaging Science and Technology, 49(3):262–271 (IF: 0.522).
|
|
Xavier Otazu, M. Gonzalez-Audicana, O. Fors, & J. Nuñez. (2005). Introduction of Sensor Spectral Response Into Image Fusion Methods. Application to Wavelet-Based Methods. IEEE Transactions on Geoscience and Remote Sensing, 43(10): 2376–2385 (IF: 1.627).
|
|
A. Richichi, O. Fors, M.T. Merino, Xavier Otazu, J. Nuñez, A. Prades, et al. (2006). The Calar Alto lunar occultation program: update and new results. Astronomy and Astrophysics (Section ’Stellar structure and evolution’), 445:1081–1088.
|
|
Robert Benavente, Maria Vanrell, & Ramon Baldrich. (2006). A data set for fuzzy colour naming. Color Research & Application, 31(1):48–56.
|
|
J. Nuñez, Xavier Otazu, & M.T. Merino. (2005). A Multiresolution-Based Method for the Determination of the Relative Resolution between Images. First Application to Remote Sensing and Medical Images. International Journal of Imaging Systems and Technology, 15(5): 225–235 (IF: 0.439).
|
|
Xavier Otazu, & Maria Vanrell. (2006). Several lightness induction effects with a computational multiresolution wavelet framework. 29th European Conference on Visual Perception (ECVP’06), Perception Suppl s, 32: 56–56.
|
|
J. Nuñez, O. Fors, Xavier Otazu, Vicenç Pala, Roman Arbiol, & M.T. Merino. (2006). A Wavelet-Based Method for the Determination of the Relative Resolution Between Remotely Sensed Images. IEEE Transactions on Geoscience and Remote Sensing, 44(9): 2539–2548.
|
|
Xavier Otazu, Maria Vanrell, & C. Alejandro Parraga. (2007). Mutiresolution Wavelet Framework Reproduces Induction Effects. Perception 36:167–167, supp.
|
|
C. Alejandro Parraga, Robert Benavente, & Maria Vanrell. (2007). Modeling Colour-Naming Space with Fuzzy Sets. Perception 36:198–198, supp.
|
|
Xavier Otazu, Maria Vanrell, & C. Alejandro Parraga. (2008). Multiresolution Wavelet Framework Models Brightness Induction Effects. VR - Vision Research, 733–751.
|
|