toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sonia Baeza; Debora Gil; Carles Sanchez; Guillermo Torres; Ignasi Garcia Olive; Ignasi Guasch; Samuel Garcia Reina; Felipe Andreo; Jose Luis Mate; Jose Luis Vercher; Antonio Rosell edit  openurl
  Title Biopsia virtual radiomica para el diagnóstico histológico de nódulos pulmonares – Resultados intermedios del proyecto Radiolung Type (down) Conference Article
  Year 2023 Publication SEPAR Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Granada; Spain; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SEPAR  
  Notes IAM Approved no  
  Call Number Admin @ si @ BGS2023 Serial 3951  
Permanent link to this record
 

 
Author Debora Gil; Guillermo Torres; Carles Sanchez edit  openurl
  Title Transforming radiomic features into radiological words Type (down) Conference Article
  Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Cartagena de Indias; Colombia; April 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number Admin @ si @ GTS2023 Serial 3952  
Permanent link to this record
 

 
Author Pau Cano; Debora Gil; Eva Musulen edit  openurl
  Title Towards automatic detection of helicobacter pylori in histological samples of gastric tissue Type (down) Conference Article
  Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Cartagena de Indias; Colombia; April 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number Admin @ si @ CGM2023 Serial 3953  
Permanent link to this record
 

 
Author Guillermo Torres; Debora Gil; Antonio Rosell; Sonia Baeza; Carles Sanchez edit  openurl
  Title A radiomic biopsy for virtual histology of pulmonary nodules Type (down) Conference Article
  Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Cartagena de Indias; Colombia; April 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number Admin @ si @ TGR2023b Serial 3954  
Permanent link to this record
 

 
Author Artur Xarles; Sergio Escalera; Thomas B. Moeslund; Albert Clapes edit  url
openurl 
  Title ASTRA: An Action Spotting TRAnsformer for Soccer Videos Type (down) Conference Article
  Year 2023 Publication Proceedings of the 6th International Workshop on Multimedia Content Analysis in Sports Abbreviated Journal  
  Volume Issue Pages 93–102  
  Keywords  
  Abstract In this paper, we introduce ASTRA, a Transformer-based model designed for the task of Action Spotting in soccer matches. ASTRA addresses several challenges inherent in the task and dataset, including the requirement for precise action localization, the presence of a long-tail data distribution, non-visibility in certain actions, and inherent label noise. To do so, ASTRA incorporates (a) a Transformer encoder-decoder architecture to achieve the desired output temporal resolution and to produce precise predictions, (b) a balanced mixup strategy to handle the long-tail distribution of the data, (c) an uncertainty-aware displacement head to capture the label variability, and (d) input audio signal to enhance detection of non-visible actions. Results demonstrate the effectiveness of ASTRA, achieving a tight Average-mAP of 66.82 on the test set. Moreover, in the SoccerNet 2023 Action Spotting challenge, we secure the 3rd position with an Average-mAP of 70.21 on the challenge set.  
  Address Otawa; Canada; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MMSports  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ XEM2023 Serial 3970  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer edit  url
openurl 
  Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type (down) Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages 3444-3454  
  Keywords  
  Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-ofdistribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method 1, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; MILAB Approved no  
  Call Number Admin @ si @ ARR2023 Serial 3974  
Permanent link to this record
 

 
Author Lei Kang; Lichao Zhang; Dazhi Jiang edit  url
doi  openurl
  Title Learning Robust Self-Attention Features for Speech Emotion Recognition with Label-Adaptive Mixup Type (down) Conference Article
  Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Speech Emotion Recognition (SER) is to recognize human emotions in a natural verbal interaction scenario with machines, which is considered as a challenging problem due to the ambiguous human emotions. Despite the recent progress in SER, state-of-the-art models struggle to achieve a satisfactory performance. We propose a self-attention based method with combined use of label-adaptive mixup and center loss. By adapting label probabilities in mixup and fitting center loss to the mixup training scheme, our proposed method achieves a superior performance to the state-of-the-art methods.  
  Address Rodhes Islands; Greece; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes LAMP Approved no  
  Call Number Admin @ si @ KZJ2023 Serial 3984  
Permanent link to this record
 

 
Author Subhajit Maity; Sanket Biswas; Siladittya Manna; Ayan Banerjee; Josep Llados; Saumik Bhattacharya; Umapada Pal edit   pdf
url  doi
openurl 
  Title SelfDocSeg: A Self-Supervised vision-based Approach towards Document Segmentation Type (down) Conference Article
  Year 2023 Publication 17th International Conference on Doccument Analysis and Recognition Abbreviated Journal  
  Volume 14187 Issue Pages 342–360  
  Keywords  
  Abstract Document layout analysis is a known problem to the documents research community and has been vastly explored yielding a multitude of solutions ranging from text mining, and recognition to graph-based representation, visual feature extraction, etc. However, most of the existing works have ignored the crucial fact regarding the scarcity of labeled data. With growing internet connectivity to personal life, an enormous amount of documents had been available in the public domain and thus making data annotation a tedious task. We address this challenge using self-supervision and unlike, the few existing self-supervised document segmentation approaches which use text mining and textual labels, we use a complete vision-based approach in pre-training without any ground-truth label or its derivative. Instead, we generate pseudo-layouts from the document images to pre-train an image encoder to learn the document object representation and localization in a self-supervised framework before fine-tuning it with an object detection model. We show that our pipeline sets a new benchmark in this context and performs at par with the existing methods and the supervised counterparts, if not outperforms. The code is made publicly available at: this https URL  
  Address Document Layout Analysis; Document  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ MBM2023 Serial 3990  
Permanent link to this record
 

 
Author Mohamed Ramzy Ibrahim; Robert Benavente; Daniel Ponsa; Felipe Lumbreras edit  url
openurl 
  Title Unveiling the Influence of Image Super-Resolution on Aerial Scene Classification Type (down) Conference Article
  Year 2023 Publication Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications Abbreviated Journal  
  Volume 14469 Issue Pages 214–228  
  Keywords  
  Abstract Deep learning has made significant advances in recent years, and as a result, it is now in a stage where it can achieve outstanding results in tasks requiring visual understanding of scenes. However, its performance tends to decline when dealing with low-quality images. The advent of super-resolution (SR) techniques has started to have an impact on the field of remote sensing by enabling the restoration of fine details and enhancing image quality, which could help to increase performance in other vision tasks. However, in previous works, contradictory results for scene visual understanding were achieved when SR techniques were applied. In this paper, we present an experimental study on the impact of SR on enhancing aerial scene classification. Through the analysis of different state-of-the-art SR algorithms, including traditional methods and deep learning-based approaches, we unveil the transformative potential of SR in overcoming the limitations of low-resolution (LR) aerial imagery. By enhancing spatial resolution, more fine details are captured, opening the door for an improvement in scene understanding. We also discuss the effect of different image scales on the quality of SR and its effect on aerial scene classification. Our experimental work demonstrates the significant impact of SR on enhancing aerial scene classification compared to LR images, opening new avenues for improved remote sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIARP  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ IBP2023 Serial 4008  
Permanent link to this record
 

 
Author Patricia Suarez; Dario Carpio; Angel Sappa edit  url
doi  openurl
  Title Depth Map Estimation from a Single 2D Image Type (down) Conference Article
  Year 2023 Publication 17th International Conference on Signal-Image Technology & Internet-Based Systems Abbreviated Journal  
  Volume Issue Pages 347-353  
  Keywords  
  Abstract This paper presents an innovative architecture based on a Cycle Generative Adversarial Network (CycleGAN) for the synthesis of high-quality depth maps from monocular images. The proposed architecture leverages a diverse set of loss functions, including cycle consistency, contrastive, identity, and least square losses, to facilitate the generation of depth maps that exhibit realism and high fidelity. A notable feature of the approach is its ability to synthesize depth maps from grayscale images without the need for paired training data. Extensive comparisons with different state-of-the-art methods show the superiority of the proposed approach in both quantitative metrics and visual quality. This work addresses the challenge of depth map synthesis and offers significant advancements in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SITIS  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2023b Serial 4009  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Henry Velesaca; Angel Sappa edit  url
doi  openurl
  Title Object Detection in Very Low-Resolution Thermal Images through a Guided-Based Super-Resolution Approach Type (down) Conference Article
  Year 2023 Publication 17th International Conference on Signal-Image Technology & Internet-Based Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This work proposes a novel approach that integrates super-resolution techniques with off-the-shelf object detection methods to tackle the problem of handling very low-resolution thermal images. The suggested approach begins by enhancing the low-resolution (LR) thermal images through a guided super-resolution strategy, leveraging a high-resolution (HR) visible spectrum image. Subsequently, object detection is performed on the high-resolution thermal image. The experimental results demonstrate tremendous improvements in comparison with both scenarios: when object detection is performed on the LR thermal image alone, as well as when object detection is conducted on the up-sampled LR thermal image. Moreover, the proposed approach proves highly valuable in camouflaged scenarios where objects might remain undetected in visible spectrum images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SITIS  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ RVS2023 Serial 4010  
Permanent link to this record
 

 
Author Patricia Suarez; Dario Carpio; Angel Sappa edit  url
doi  openurl
  Title Boosting Guided Super-Resolution Performance with Synthesized Images Type (down) Conference Article
  Year 2023 Publication 17th International Conference on Signal-Image Technology & Internet-Based Systems Abbreviated Journal  
  Volume Issue Pages 189-195  
  Keywords  
  Abstract Guided image processing techniques are widely used for extracting information from a guiding image to aid in the processing of the guided one. These images may be sourced from different modalities, such as 2D and 3D, or different spectral bands, like visible and infrared. In the case of guided cross-spectral super-resolution, features from the two modal images are extracted and efficiently merged to migrate guidance information from one image, usually high-resolution (HR), toward the guided one, usually low-resolution (LR). Different approaches have been recently proposed focusing on the development of architectures for feature extraction and merging in the cross-spectral domains, but none of them care about the different nature of the given images. This paper focuses on the specific problem of guided thermal image super-resolution, where an LR thermal image is enhanced by an HR visible spectrum image. To improve existing guided super-resolution techniques, a novel scheme is proposed that maps the original guiding information to a thermal image-like representation that is similar to the output. Experimental results evaluating five different approaches demonstrate that the best results are achieved when the guiding and guided images share the same domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SITIS  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2023c Serial 4011  
Permanent link to this record
 

 
Author Mickael Coustaty; Alicia Fornes edit  url
openurl 
  Title Document Analysis and Recognition – ICDAR 2023 Workshops Type (down) Book Whole
  Year 2023 Publication Document Analysis and Recognition – ICDAR 2023 Workshops Abbreviated Journal  
  Volume 14194 Issue 2 Pages  
  Keywords  
  Abstract  
  Address San Jose; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ CoF2023 Serial 3852  
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li edit  url
openurl 
  Title Advances in Face Presentation Attack Detection Type (down) Book Whole
  Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ WGE2023a Serial 3955  
Permanent link to this record
 

 
Author Armin Mehri edit  isbn
openurl 
  Title Deep learning based architectures for cross-domain image processing Type (down) Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Human vision is restricted to the visual-optical spectrum. Machine vision is not.
Cameras sensitive to diverse infrared spectral bands can improve the capacities of
autonomous systems and provide a comprehensive view. Relevant scene content
can be made visible, particularly in situations when sensors of other modalities,
such as a visual-optical camera, require a source of illumination. As a result, increasing the level of automation not only avoids human errors but also reduces
machine-induced errors. Furthermore, multi-spectral sensor systems with infrared
imagery as one modality are a rich source of information and can conceivably
increase the robustness of many autonomous systems. Robotics, automobiles,
biometrics, security, surveillance, and the military are some examples of fields
that can profit from the use of infrared imagery in their respective applications.
Although multimodal spectral sensors have come a long way, there are still several
bottlenecks that prevent us from combining their output information and using
them as comprehensive images. The primary issue with infrared imaging is the lack
of potential benefits due to their cost influence on sensor resolution, which grows
exponentially with greater resolution. Due to the more costly sensor technology
required for their development, their resolutions are substantially lower than thoseof regular digital cameras.
This thesis aims to improve beyond-visible-spectrum machine vision by integrating multi-modal spectral sensors. The emphasis is on transforming the produced images to enhance their resolution to match expected human perception, bring the color representation close to human understanding of natural color, and improve machine vision application performance. This research focuses mainly on two tasks, image Colorization and Image Super resolution for both single- and cross-domain problems. We first start with an extensive review of the state of the art in both tasks, point out the shortcomings of existing approaches, and then present our solutions to address their limitations. Our solutions demonstrate that low-cost channel information (i.e., visible image) can be used to improve expensive channel
information (i.e., infrared image), resulting in images with higher quality and closer to human perception at a lower cost than a high-cost infrared camera.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-1-5 Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ Meh2023 Serial 3959  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: