Isabel Guitart, Jordi Conesa, Luis Villarejo, Agata Lapedriza, David Masip, Antoni Perez, et al. (2013). Opinion Mining on Educational Resources at the Open University of Catalonia. In 3rd International Workshop on Adaptive Learning via Interactive, Collaborative and Emotional approaches. In conjunction with CISIS 2013: The 7th International Conference on Complex, Intelligent, and Software Intensive Systems (pp. 385–390).
Abstract: In order to make improvements to teaching, it is vital to know what students think of the way they are taught. With that purpose in mind, exhaustively analyzing the forums associated with the subjects taught at the Universitat Oberta de Cataluya (UOC) would be extremely helpful, as the university's students often post comments on their learning experiences in them. Exploiting the content of such forums is not a simple undertaking. The volume of data involved is very large, and performing the task manually would require a great deal of effort from lecturers. As a first step to solve this problem, we propose a tool to automatically analyze the posts in forums of communities of UOC students and teachers, with a view to systematically mining the opinions they contain. This article defines the architecture of such tool and explains how lexical-semantic and language technology resources can be used to that end. For pilot testing purposes, the tool has been used to identify students' opinions on the UOC's Business Intelligence master's degree course during the last two years. The paper discusses the results of such test. The contribution of this paper is twofold. Firstly, it demonstrates the feasibility of using natural language parsing techniques to help teachers to make decisions. Secondly, it introduces a simple tool that can be refined and adapted to a virtual environment for the purpose in question.
|
Muhammad Anwer Rao, David Vazquez, & Antonio Lopez. (2011). Opponent Colors for Human Detection. In J. Vitria, J.M. Sanches, & M. Hernandez (Eds.), 5th Iberian Conference on Pattern Recognition and Image Analysis (Vol. 6669, pp. 363–370). LNCS. Berlin Heidelberg: Springer.
Abstract: Human detection is a key component in fields such as advanced driving assistance and video surveillance. However, even detecting non-occluded standing humans remains a challenge of intensive research. Finding good features to build human models for further detection is probably one of the most important issues to face. Currently, shape, texture and motion features have deserve extensive attention in the literature. However, color-based features, which are important in other domains (e.g., image categorization), have received much less attention. In fact, the use of RGB color space has become a kind of choice by default. The focus has been put in developing first and second order features on top of RGB space (e.g., HOG and co-occurrence matrices, resp.). In this paper we evaluate the opponent colors (OPP) space as a biologically inspired alternative for human detection. In particular, by feeding OPP space in the baseline framework of Dalal et al. for human detection (based on RGB, HOG and linear SVM), we will obtain better detection performance than by using RGB space. This is a relevant result since, up to the best of our knowledge, OPP space has not been previously used for human detection. This suggests that in the future it could be worth to compute co-occurrence matrices, self-similarity features, etc., also on top of OPP space, i.e., as we have done with HOG in this paper.
Keywords: Pedestrian Detection; Color; Part Based Models
|
Nil Ballus, Bhalaji Nagarajan, & Petia Radeva. (2022). Opt-SSL: An Enhanced Self-Supervised Framework for Food Recognition. In 10th Iberian Conference on Pattern Recognition and Image Analysis (Vol. 13256). LNCS.
Abstract: Self-supervised Learning has been showing upbeat performance in several computer vision tasks. The popular contrastive methods make use of a Siamese architecture with different loss functions. In this work, we go deeper into two very recent state of the art frameworks, namely, SimSiam and Barlow Twins. Inspired by them, we propose a new self-supervised learning method we call Opt-SSL that combines both image and feature contrasting. We validate the proposed method on the food recognition task, showing that our proposed framework enables the self-learning networks to learn better visual representations.
Keywords: Self-supervised; Contrastive learning; Food recognition
|
Naveen Onkarappa. (2013). Optical Flow in Driver Assistance Systems (Angel Sappa, Ed.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Motion perception is one of the most important attributes of the human brain. Visual motion perception consists in inferring speed and direction of elements in a scene based on visual inputs. Analogously, computer vision is assisted by motion cues in the scene. Motion detection in computer vision is useful in solving problems such as segmentation, depth from motion, structure from motion, compression, navigation and many others. These problems are common in several applications, for instance, video surveillance, robot navigation and advanced driver assistance systems (ADAS). One of the most widely used techniques for motion detection is the optical flow estimation. The work in this thesis attempts to make optical flow suitable for the requirements and conditions of driving scenarios. In this context, a novel space-variant representation called reverse log-polar representation is proposed that is shown to be better than the traditional log-polar space-variant representation for ADAS. The space-variant representations reduce the amount of data to be processed. Another major contribution in this research is related to the analysis of the influence of specific characteristics from driving scenarios on the optical flow accuracy. Characteristics such as vehicle speed and
road texture are considered in the aforementioned analysis. From this study, it is inferred that the regularization weight has to be adapted according to the required error measure and for different speeds and road textures. It is also shown that polar represented optical flow suits driving scenarios where predominant motion is translation. Due to the requirements of such a study and by the lack of needed datasets a new synthetic dataset is presented; it contains: i) sequences of different speeds and road textures in an urban scenario; ii) sequences with complex motion of an on-board camera; and iii) sequences with additional moving vehicles in the scene. The ground-truth optical flow is generated by the ray-tracing technique. Further, few applications of optical flow in ADAS are shown. Firstly, a robust RANSAC based technique to estimate horizon line is proposed. Then, an egomotion estimation is presented to compare the proposed space-variant representation with the classical one. As a final contribution, a modification in the regularization term is proposed that notably improves the results
in the ADAS applications. This adaptation is evaluated using a state of the art optical flow technique. The experiments on a public dataset (KITTI) validate the advantages of using the proposed modification.
|
Naveen Onkarappa, Sujay M. Veerabhadrappa, & Angel Sappa. (2012). Optical Flow in Onboard Applications: A Study on the Relationship Between Accuracy and Scene Texture. In 4th International Conference on Signal and Image Processing (Vol. 221, pp. 257–267).
Abstract: Optical flow has got a major role in making advanced driver assistance systems (ADAS) a reality. ADAS applications are expected to perform efficiently in all kinds of environments, those are highly probable, that one can drive the vehicle in different kinds of roads, times and seasons. In this work, we study the relationship of optical flow with different roads, that is by analyzing optical flow accuracy on different road textures. Texture measures such as TeX , TeX and TeX are evaluated for this purpose. Further, the relation of regularization weight to the flow accuracy in the presence of different textures is also analyzed. Additionally, we present a framework to generate synthetic sequences of different textures in ADAS scenarios with ground-truth optical flow.
|
Arnau Baro, Pau Riba, Jorge Calvo-Zaragoza, & Alicia Fornes. (2018). Optical Music Recognition by Long Short-Term Memory Networks. In B. L. A. Fornes (Ed.), Graphics Recognition. Current Trends and Evolutions (Vol. 11009, pp. 81–95). LNCS. Springer.
Abstract: Optical Music Recognition refers to the task of transcribing the image of a music score into a machine-readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level. The experimental results are promising, showing the benefits of our approach.
Keywords: Optical Music Recognition; Recurrent Neural Network; Long ShortTerm Memory
|
Arnau Baro, Pau Riba, Jorge Calvo-Zaragoza, & Alicia Fornes. (2017). Optical Music Recognition by Recurrent Neural Networks. In 14th IAPR International Workshop on Graphics Recognition (pp. 25–26).
Abstract: Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level
Keywords: Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory
|
Maria Vanrell, & Jordi Vitria. (1997). Optimal 3x3 decomposable disks for morphological transformations. Image and Vision Computing, 15(11), 845–854.
|
Oriol Ramos Terrades, Ernest Valveny, & Salvatore Tabbone. (2009). Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9), 1630–1644.
Abstract: The combination of the output of classifiers has been one of the strategies used to improve classification rates in general purpose classification systems. Some of the most common approaches can be explained using the Bayes' formula. In this paper, we tackle the problem of the combination of classifiers using a non-Bayesian probabilistic framework. This approach permits us to derive two linear combination rules that minimize misclassification rates under some constraints on the distribution of classifiers. In order to show the validity of this approach we have compared it with other popular combination rules from a theoretical viewpoint using a synthetic data set, and experimentally using two standard databases: the MNIST handwritten digit database and the GREC symbol database. Results on the synthetic data set show the validity of the theoretical approach. Indeed, results on real data show that the proposed methods outperform other common combination schemes.
|
Oriol Pujol, & Petia Radeva. (2006). Optimal extension of Error Correcting Output Codes.
|
Gemma Roig, Xavier Boix, & Fernando De la Torre. (2009). Optimal Feature Selection for Subspace Image Matching. In 2nd IEEE International Workshop on Subspace Methods in conjunction.
Abstract: Image matching has been a central research topic in computer vision over the last decades. Typical approaches to correspondence involve matching feature points between images. In this paper, we present a novel problem for establishing correspondences between a sparse set of image features and a previously learned subspace model. We formulate the matching task as an energy minimization, and jointly optimize over all possible feature assignments and parameters of the subspace model. This problem is in general NP-hard. We propose a convex relaxation approximation, and develop two optimization strategies: naïve gradient-descent and quadratic programming. Alternatively, we reformulate the optimization criterion as a sparse eigenvalue problem, and solve it using a recently proposed backward greedy algorithm. Experimental results on facial feature detection show that the quadratic programming solution provides better selection mechanism for relevant features.
|
Oriol Ramos Terrades, Salvatore Tabbone, & Ernest Valveny. (2007). Optimal Linear Combination for Two-class Classifiers. In Proceedings of the International Conference on Advances in Pattern Recognition.
|
Sergio Vera, Miguel Angel Gonzalez Ballester, & Debora Gil. (2012). Optimal Medial Surface Generation for Anatomical Volume Representations. In MichaelW. David and Vannier H. and H. Yoshida (Ed.), Abdominal Imaging. Computational and Clinical Applications (Vol. 7601, pp. 265–273). Lecture Notes in Computer Science. Springer Berlin Heidelberg.
Abstract: Medial representations are a widely used technique in abdominal organ shape representation and parametrization. Those methods require good medial manifolds as a starting point. Any medial
surface used to parametrize a volume should be simple enough to allow an easy manipulation and complete enough to allow an accurate reconstruction of the volume. Obtaining good quality medial
surfaces is still a problem with current iterative thinning methods. This forces the usage of generic, pre-calculated medial templates that are adapted to the final shape at the cost of a drop in volume reconstruction.
This paper describes an operator for generation of medial structures that generates clean and complete manifolds well suited for their further use in medial representations of abdominal organ volumes. While being simpler than thinning surfaces, experiments show its high performance in volume reconstruction and preservation of medial surface main branching topology.
Keywords: Medial surface representation; volume reconstruction
|
Cristina Cañero, Petia Radeva, Oriol Pujol, Ricardo Toledo, Debora Gil, J. Saludes, et al. (1999). Optimal Stent Implantation: Three-dimensional Evaluation of the Mutual Position of Stent and Vessel via Intracoronary Ecography. In Proceedings of International Conference on Computer in Cardiology (CIC´99).
Abstract: We present a new automatic technique to visualize and quantify the mutual position between the stent and the vessel wall by considering their three-dimensional reconstruction. Two deformable generalized cylinders adapt to the image features in all IVUS planes corresponding to the vessel wall and the stent in order to reconstruct the boundaries of the stent and the vessel in space. The image features that characterize the stent and the vessel wall are determined in terms of edge and ridge image detectors taking into account the gray level of the image pixels. We show that the 30 reconstruction by deformable cylinders is accurate and robust due to the spatial data coherence in the considered volumetric IVUS image. The main clinic utility of the stent and vessel reconstruction by deformable’ cylinders consists of its possibility to visualize and to assess the optimal stent introduction.
|
Manisha Das, Deep Gupta, Petia Radeva, & Ashwini M. Bakde. (2021). Optimized CT-MR neurological image fusion framework using biologically inspired spiking neural model in hybrid ℓ1 - ℓ0 layer decomposition domain. BSPC - Biomedical Signal Processing and Control, 68, 102535.
Abstract: Medical image fusion plays an important role in the clinical diagnosis of several critical neurological diseases by merging complementary information available in multimodal images. In this paper, a novel CT-MR neurological image fusion framework is proposed using an optimized biologically inspired feedforward neural model in two-scale hybrid ℓ1 − ℓ0 decomposition domain using gray wolf optimization to preserve the structural as well as texture information present in source CT and MR images. Initially, the source images are subjected to two-scale ℓ1 − ℓ0 decomposition with optimized parameters, giving a scale-1 detail layer, a scale-2 detail layer and a scale-2 base layer. Two detail layers at scale-1 and 2 are fused using an optimized biologically inspired neural model and weighted average scheme based on local energy and modified spatial frequency to maximize the preservation of edges and local textures, respectively, while the scale-2 base layer gets fused using choose max rule to preserve the background information. To optimize the hyper-parameters of hybrid ℓ1 − ℓ0 decomposition and biologically inspired neural model, a fitness function is evaluated based on spatial frequency and edge index of the resultant fused image obtained by adding all the fused components. The fusion performance is analyzed by conducting extensive experiments on different CT-MR neurological images. Experimental results indicate that the proposed method provides better-fused images and outperforms the other state-of-the-art fusion methods in both visual and quantitative assessments.
|