|   | 
Details
   web
Records
Author Carolina Malagelada; F.De Lorio; Santiago Segui; S. Mendez; Michal Drozdzal; Jordi Vitria; Petia Radeva; J.Santos; Anna Accarino; Juan R. Malagelada; Fernando Azpiroz
Title (down) Functional gut disorders or disordered gut function? Small bowel dysmotility evidenced by an original technique Type Journal Article
Year 2012 Publication Neurogastroenterology & Motility Abbreviated Journal NEUMOT
Volume 24 Issue 3 Pages 223-230
Keywords capsule endoscopy;computer vision analysis;machine learning technique;small bowel motility
Abstract JCR Impact Factor 2010: 3.349
Background This study aimed to determine the proportion of cases with abnormal intestinal motility among patients with functional bowel disorders. To this end, we applied an original method, previously developed in our laboratory, for analysis of endoluminal images obtained by capsule endoscopy. This novel technology is based on computer vision and machine learning techniques.
 Methods The endoscopic capsule (Pillcam SB1; Given Imaging, Yokneam, Israel) was administered to 80 patients with functional bowel disorders and 70 healthy subjects. Endoluminal image analysis was performed with a computer vision program developed for the evaluation of contractile events (luminal occlusions and radial wrinkles), non-contractile patterns (open tunnel and smooth wall patterns), type of content (secretions, chyme) and motion of wall and contents. Normality range and discrimination of abnormal cases were established by a machine learning technique. Specifically, an iterative classifier (one-class support vector machine) was applied in a random population of 50 healthy subjects as a training set and the remaining subjects (20 healthy subjects and 80 patients) as a test set.
 Key Results The classifier identified as abnormal 29% of patients with functional diseases of the bowel (23 of 80), and as normal 97% of healthy subjects (68 of 70) (P < 0.05 by chi-squared test). Patients identified as abnormal clustered in two groups, which exhibited either a hyper- or a hypodynamic motility pattern. The motor behavior was unrelated to clinical features.
Conclusions &  Inferences With appropriate methodology, abnormal intestinal motility can be demonstrated in a significant proportion of patients with functional bowel disorders, implying a pathologic disturbance of gut physiology.
Address
Corporate Author Thesis
Publisher Wiley Online Library Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; OR; MV Approved no
Call Number Admin @ si @ MLS2012 Serial 1830
Permanent link to this record
 

 
Author Dena Bazazian
Title (down) Fully Convolutional Networks for Text Understanding in Scene Images Type Book Whole
Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Text understanding in scene images has gained plenty of attention in the computer vision community and it is an important task in many applications as text carries semantically rich information about scene content and context. For instance, reading text in a scene can be applied to autonomous driving, scene understanding or assisting visually impaired people. The general aim of scene text understanding is to localize and recognize text in scene images. Text regions are first localized in the original image by a trained detector model and afterwards fed into a recognition module. The tasks of localization and recognition are highly correlated since an inaccurate localization can affect the recognition task.
The main purpose of this thesis is to devise efficient methods for scene text understanding. We investigate how the latest results on deep learning can advance text understanding pipelines. Recently, Fully Convolutional Networks (FCNs) and derived methods have achieved a significant performance on semantic segmentation and pixel level classification tasks. Therefore, we took benefit of the strengths of FCN approaches in order to detect text in natural scenes. In this thesis we have focused on two challenging tasks of scene text understanding which are Text Detection and Word Spotting. For the task of text detection, we have proposed an efficient text proposal technique in scene images. We have considered the Text Proposals method as the baseline which is an approach to reduce the search space of possible text regions in an image. In order to improve the Text Proposals method we combined it with Fully Convolutional Networks to efficiently reduce the number of proposals while maintaining the same level of accuracy and thus gaining a significant speed up. Our experiments demonstrate that this text proposal approach yields significantly higher recall rates than the line based text localization techniques, while also producing better-quality localization. We have also applied this technique on compressed images such as videos from wearable egocentric cameras. For the task of word spotting, we have introduced a novel mid-level word representation method. We have proposed a technique to create and exploit an intermediate representation of images based on text attributes which roughly correspond to character probability maps. Our representation extends the concept of Pyramidal Histogram Of Characters (PHOC) by exploiting Fully Convolutional Networks to derive a pixel-wise mapping of the character distribution within candidate word regions. We call this representation the Soft-PHOC. Furthermore, we show how to use Soft-PHOC descriptors for word spotting tasks through an efficient text line proposal algorithm. To evaluate the detected text, we propose a novel line based evaluation along with the classic bounding box based approach. We test our method on incidental scene text images which comprises real-life scenarios such as urban scenes. The importance of incidental scene text images is due to the complexity of backgrounds, perspective, variety of script and language, short text and little linguistic context. All of these factors together makes the incidental scene text images challenging.
Address November 2018
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Dimosthenis Karatzas;Andrew Bagdanov
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-948531-1-1 Medium
Area Expedition Conference
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ Baz2018 Serial 3220
Permanent link to this record
 

 
Author Utkarsh Porwal; Alicia Fornes; Faisal Shafait (eds)
Title (down) Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition. 18th International Conference, ICFHR 2022 Type Book Whole
Year 2022 Publication Frontiers in Handwriting Recognition. Abbreviated Journal
Volume 13639 Issue Pages
Keywords
Abstract
Address ICFHR 2022, Hyderabad, India, December 4–7, 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor Utkarsh Porwal; Alicia Fornes; Faisal Shafait
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-21648-0 Medium
Area Expedition Conference ICFHR
Notes DAG Approved no
Call Number Admin @ si @ PFS2022 Serial 3809
Permanent link to this record
 

 
Author A. Martinez; Jordi Vitria
Title (down) From Visual Scanning to Object Recognition Type Conference Article
Year 1997 Publication (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Barcelona
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR;MV Approved no
Call Number BCNPCL @ bcnpcl @ MaV1997c Serial 58
Permanent link to this record
 

 
Author A. Martinez; Jordi Vitria
Title (down) From visual scanning to object recognition Type Report
Year 1996 Publication CVC Technical Report #17 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address CVC (UAB)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR;MV Approved no
Call Number BCNPCL @ bcnpcl @ MaV1996b Serial 528
Permanent link to this record
 

 
Author Antonio Lopez; Jiaolong Xu; Jose Luis Gomez; David Vazquez; German Ros
Title (down) From Virtual to Real World Visual Perception using Domain Adaptation -- The DPM as Example Type Book Chapter
Year 2017 Publication Domain Adaptation in Computer Vision Applications Abbreviated Journal
Volume Issue 13 Pages 243-258
Keywords Domain Adaptation
Abstract Supervised learning tends to produce more accurate classifiers than unsupervised learning in general. This implies that training data is preferred with annotations. When addressing visual perception challenges, such as localizing certain object classes within an image, the learning of the involved classifiers turns out to be a practical bottleneck. The reason is that, at least, we have to frame object examples with bounding boxes in thousands of images. A priori, the more complex the model is regarding its number of parameters, the more annotated examples are required. This annotation task is performed by human oracles, which ends up in inaccuracies and errors in the annotations (aka ground truth) since the task is inherently very cumbersome and sometimes ambiguous. As an alternative we have pioneered the use of virtual worlds for collecting such annotations automatically and with high precision. However, since the models learned with virtual data must operate in the real world, we still need to perform domain adaptation (DA). In this chapter we revisit the DA of a deformable part-based model (DPM) as an exemplifying case of virtual- to-real-world DA. As a use case, we address the challenge of vehicle detection for driver assistance, using different publicly available virtual-world data. While doing so, we investigate questions such as: how does the domain gap behave due to virtual-vs-real data with respect to dominant object appearance per domain, as well as the role of photo-realism in the virtual world.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Gabriela Csurka
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 601.223; 600.076; 600.118 Approved no
Call Number ADAS @ adas @ LXG2017 Serial 2872
Permanent link to this record
 

 
Author Svebor Karaman; Giuseppe Lisanti; Andrew Bagdanov; Alberto del Bimbo
Title (down) From re-identification to identity inference: Labeling consistency by local similarity constraints Type Book Chapter
Year 2014 Publication Person Re-Identification Abbreviated Journal
Volume 2 Issue Pages 287-307
Keywords re-identification; Identity inference; Conditional random fields; Video surveillance
Abstract In this chapter, we introduce the problem of identity inference as a generalization of person re-identification. It is most appropriate to distinguish identity inference from re-identification in situations where a large number of observations must be identified without knowing a priori that groups of test images represent the same individual. The standard single- and multishot person re-identification common in the literature are special cases of our formulation. We present an approach to solving identity inference by modeling it as a labeling problem in a Conditional Random Field (CRF). The CRF model ensures that the final labeling gives similar labels to detections that are similar in feature space. Experimental results are given on the ETHZ, i-LIDS and CAVIAR datasets. Our approach yields state-of-the-art performance for multishot re-identification, and our results on the more general identity inference problem demonstrate that we are able to infer the identity of very many examples even with very few labeled images in the gallery.
Address
Corporate Author Thesis
Publisher Springer London Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2191-6586 ISBN 978-1-4471-6295-7 Medium
Area Expedition Conference
Notes LAMP; 600.079 Approved no
Call Number Admin @ si @KLB2014b Serial 2521
Permanent link to this record
 

 
Author Antonio Hernandez
Title (down) From pixels to gestures: learning visual representations for human analysis in color and depth data sequences Type Book Whole
Year 2015 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The visual analysis of humans from images is an important topic of interest due to its relevance to many computer vision applications like pedestrian detection, monitoring and surveillance, human-computer interaction, e-health or content-based image retrieval, among others.

In this dissertation we are interested in learning different visual representations of the human body that are helpful for the visual analysis of humans in images and video sequences. To that end, we analyze both RGB and depth image modalities and address the problem from three different research lines, at different levels of abstraction; from pixels to gestures: human segmentation, human pose estimation and gesture recognition.

First, we show how binary segmentation (object vs. background) of the human body in image sequences is helpful to remove all the background clutter present in the scene. The presented method, based on Graph cuts optimization, enforces spatio-temporal consistency of the produced segmentation masks among consecutive frames. Secondly, we present a framework for multi-label segmentation for obtaining much more detailed segmentation masks: instead of just obtaining a binary representation separating the human body from the background, finer segmentation masks can be obtained separating the different body parts.

At a higher level of abstraction, we aim for a simpler yet descriptive representation of the human body. Human pose estimation methods usually rely on skeletal models of the human body, formed by segments (or rectangles) that represent the body limbs, appropriately connected following the kinematic constraints of the human body. In practice, such skeletal models must fulfill some constraints in order to allow for efficient inference, while actually limiting the expressiveness of the model. In order to cope with this, we introduce a top-down approach for predicting the position of the body parts in the model, using a mid-level part representation based on Poselets.

Finally, we propose a framework for gesture recognition based on the bag of visual words framework. We leverage the benefits of RGB and depth image modalities by combining modality-specific visual vocabularies in a late fusion fashion. A new rotation-variant depth descriptor is presented, yielding better results than other state-of-the-art descriptors. Moreover, spatio-temporal pyramids are used to encode rough spatial and temporal structure. In addition, we present a probabilistic reformulation of Dynamic Time Warping for gesture segmentation in video sequences. A Gaussian-based probabilistic model of a gesture is learnt, implicitly encoding possible deformations in both spatial and time domains.
Address January 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Sergio Escalera;Stan Sclaroff
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-940902-0-2 Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ Her2015 Serial 2576
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes
Title (down) From Optical Music Recognition to Handwritten Music Recognition: a Baseline Type Journal Article
Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 123 Issue Pages 1-8
Keywords
Abstract Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.097; 601.302; 601.330; 600.140; 600.121 Approved no
Call Number Admin @ si @ BRC2019 Serial 3275
Permanent link to this record
 

 
Author Florin Popescu; Stephane Ayache; Sergio Escalera; Xavier Baro; Cecile Capponi; Patrick Panciatici; Isabelle Guyon
Title (down) From geospatial observations of ocean currents to causal predictors of spatio-economic activity using computer vision and machine learning Type Conference Article
Year 2016 Publication European Geosciences Union General Assembly Abbreviated Journal
Volume 18 Issue Pages
Keywords
Abstract The big data transformation currently revolutionizing science and industry forges novel possibilities in multimodal analysis scarcely imaginable only a decade ago. One of the important economic and industrial problems that stand to benefit from the recent expansion of data availability and computational prowess is the prediction of electricity demand and renewable energy generation. Both are correlates of human activity: spatiotemporal energy consumption patterns in society are a factor of both demand (weather dependent) and supply, which determine cost – a relation expected to strengthen along with increasing renewable energy dependence. One of the main drivers of European weather patterns is the activity of the Atlantic Ocean and in particular its dominant Northern Hemisphere current: the Gulf Stream. We choose this particular current as a test case in part due to larger amount of relevant data and scientific literature available for refinement of analysis techniques.
This data richness is due not only to its economic importance but also to its size being clearly visible in radar and infrared satellite imagery, which makes it easier to detect using Computer Vision (CV). The power of CV techniques makes basic analysis thus developed scalable to other smaller and less known, but still influential, currents, which are not just curves on a map, but complex, evolving, moving branching trees in 3D projected onto a 2D image.
We investigate means of extracting, from several image modalities (including recently available Copernicus radar and earlier Infrared satellites), a parameterized presentation of the state of the Gulf Stream and its environment that is useful as feature space representation in a machine learning context, in this case with the EC’s H2020-sponsored ‘See.4C’ project, in the context of which data scientists may find novel predictors of spatiotemporal energy flow. Although automated extractors of Gulf Stream position exist, they differ in methodology and result. We shall attempt to extract more complex feature representation including branching points, eddies and parameterized changes in transport and velocity. Other related predictive features will be similarly developed, such as inference of deep water flux long the current path and wider spatial scale features such as Hough transform, surface turbulence indicators and temperature gradient indexes along with multi-time scale analysis of ocean height and temperature dynamics. The geospatial imaging and ML community may therefore benefit from a baseline of open-source techniques useful and expandable to other related prediction and/or scientific analysis tasks.
Address Vienna; Austria; April 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference EGU
Notes HuPBA;MV; Approved no
Call Number Admin @ si @ PAE2016 Serial 2772
Permanent link to this record
 

 
Author Adria Ruiz; Joost Van de Weijer; Xavier Binefa
Title (down) From emotions to action units with hidden and semi-hidden-task learning Type Conference Article
Year 2015 Publication 16th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 3703-3711
Keywords
Abstract Limited annotated training data is a challenging problem in Action Unit recognition. In this paper, we investigate how the use of large databases labelled according to the 6 universal facial expressions can increase the generalization ability of Action Unit classifiers. For this purpose, we propose a novel learning framework: Hidden-Task Learning. HTL aims to learn a set of Hidden-Tasks (Action Units)for which samples are not available but, in contrast, training data is easier to obtain from a set of related VisibleTasks (Facial Expressions). To that end, HTL is able to exploit prior knowledge about the relation between Hidden and Visible-Tasks. In our case, we base this prior knowledge on empirical psychological studies providing statistical correlations between Action Units and universal facial expressions. Additionally, we extend HTL to Semi-Hidden Task Learning (SHTL) assuming that Action Unit training samples are also provided. Performing exhaustive experiments over four different datasets, we show that HTL and SHTL improve the generalization ability of AU classifiers by training them with additional facial expression data. Additionally, we show that SHTL achieves competitive performance compared with state-of-the-art Transductive Learning approaches which face the problem of limited training data by using unlabelled test samples during training.
Address Santiago de Chile; Chile; December 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes LAMP; 600.068; 600.079 Approved no
Call Number Admin @ si @ RWB2015 Serial 2671
Permanent link to this record
 

 
Author Albert Clapes; Ozan Bilici; Dariia Temirova; Egils Avots; Gholamreza Anbarjafari; Sergio Escalera
Title (down) From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation Type Conference Article
Year 2018 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 2373-2382
Keywords
Abstract
Address Salt Lake City; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes HUPBA Approved no
Call Number Admin @ si @ Serial 3116
Permanent link to this record
 

 
Author Egils Avots; Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Baro; Paul Pallin; Gholamreza Anbarjafari
Title (down) From 2D to 3D geodesic-based garment matching Type Journal Article
Year 2019 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 78 Issue 18 Pages 25829–25853
Keywords Shape matching; Geodesic distance; Texture mapping; RGBD image processing; Gaussian mixture model
Abstract A new approach for 2D to 3D garment retexturing is proposed based on Gaussian mixture models and thin plate splines (TPS). An automatically segmented garment of an individual is matched to a new source garment and rendered, resulting in augmented images in which the target garment has been retextured using the texture of the source garment. We divide the problem into garment boundary matching based on Gaussian mixture models and then interpolate inner points using surface topology extracted through geodesic paths, which leads to a more realistic result than standard approaches. We evaluated and compared our system quantitatively by root mean square error (RMS) and qualitatively using the mean opinion score (MOS), showing the benefits of the proposed methodology on our gathered dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; ISE; 600.098; 600.119; 602.133 Approved no
Call Number Admin @ si @ AME2019 Serial 3317
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani; Pau Rodriguez; Carles Fernandez; Armin Mehri; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez
Title (down) Frequency-based Enhancement Network for Efficient Super-Resolution Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal ACCESS
Volume 10 Issue Pages 57383-57397
Keywords Deep learning; Frequency-based methods; Lightweight architectures; Single image super-resolution
Abstract Recently, deep convolutional neural networks (CNNs) have provided outstanding performance in single image super-resolution (SISR). Despite their remarkable performance, the lack of high-frequency information in the recovered images remains a core problem. Moreover, as the networks increase in depth and width, deep CNN-based SR methods are faced with the challenge of computational complexity in practice. A promising and under-explored solution is to adapt the amount of compute based on the different frequency bands of the input. To this end, we present a novel Frequency-based Enhancement Block (FEB) which explicitly enhances the information of high frequencies while forwarding low-frequencies to the output. In particular, this block efficiently decomposes features into low- and high-frequency and assigns more computation to high-frequency ones. Thus, it can help the network generate more discriminative representations by explicitly recovering finer details. Our FEB design is simple and generic and can be used as a direct replacement of commonly used SR blocks with no need to change network architectures. We experimentally show that when replacing SR blocks with FEB we consistently improve the reconstruction error, while reducing the number of parameters in the model. Moreover, we propose a lightweight SR model — Frequency-based Enhancement Network (FENet) — based on FEB that matches the performance of larger models. Extensive experiments demonstrate that our proposal performs favorably against the state-of-the-art SR algorithms in terms of visual quality, memory footprint, and inference time. The code is available at https://github.com/pbehjatii/FENet
Address 18 May 2022
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ BRF2022a Serial 3747
Permanent link to this record
 

 
Author H.Martin Kjer; Jens Fagertuna; Sergio Vera; Debora Gil; Miguel Angel Gonzalez Ballester; Rasmus R. Paulsena
Title (down) Free-form image registration of human cochlear uCT data using skeleton similarity as anatomical prior Type Journal Article
Year 2016 Publication Patter Recognition Letters Abbreviated Journal PRL
Volume 76 Issue 1 Pages 76-82
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.060 Approved no
Call Number Admin @ si @ MFV2017b Serial 2941
Permanent link to this record