|   | 
Details
   web
Records
Author Jaume Garcia
Title (up) Statistical Models of the Architecture and Function of the Left Ventricle Type Book Whole
Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Cardiovascular Diseases, specially those affecting the Left Ventricle (LV), are the leading cause of death in developed countries with approximately a 30% of all global deaths. In order to address this public health concern, physicians focus on diagnosis and therapy planning. On one hand, early and accurate detection of Regional Wall Motion Abnormalities (RWMA) significantly contributes to a quick diagnosis and prevents the patient to reach more severe stages. On the other hand, a thouroughly knowledge of the normal gross anatomy of the LV, as well as, the distribution of its muscular fibers is crucial for designing specific interventions and therapies (such as pacemaker implanction). Statistical models obtained from the analysis of different imaging modalities allow the computation of the normal ranges of variation within a given population. Normality models are a valuable tool for the definition of objective criterions quantifying the degree of (anomalous) deviation of the LV function and anatomy for a given subject. The creation of statistical models involve addressing three main issues: extraction of data from images, definition of a common domain for comparison of data across patients and designing appropriate statistical analysis schemes. In this PhD thesis we present generic image processing tools for the creation of statistical models of the LV anatomy and function. On one hand, we use differential geometry concepts to define a computational framework (the Normalized Parametric Domain, NPD) suitable for the comparison and fusion of several clinical scores obtained over the LV. On the other hand, we present a variational approach (the Harmonic Phase Flow, HPF) for the estimation of myocardial motion that provides dense and continuous vector fields without overestimating motion at injured areas. These tools are used for the creation of statistical models. Regarding anatomy, we obtain an atlas jointly modelling, both, LV gross anatomy and fiber architecture. Regarding function, we compute normality patterns of scores characterizing the (global and local) LV function and explore, for the first time, the configuration of local scores better suited for RWMA detection.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ Gar2009a Serial 1499
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados
Title (up) Symbol Spotting in Digital Libraries:Focused Retrieval over Graphic-rich Document Collections Type Book Whole
Year 2010 Publication Symbol Spotting in Digital Libraries:Focused Retrieval over Graphic-rich Document Collections Abbreviated Journal
Volume Issue Pages
Keywords Focused Retrieval , Graphical Pattern Indexation,Graphics Recognition ,Pattern Recognition , Performance Evaluation , Symbol Description ,Symbol Spotting
Abstract The specific problem of symbol recognition in graphical documents requires additional techniques to those developed for character recognition. The most well-known obstacle is the so-called Sayre paradox: Correct recognition requires good segmentation, yet improvement in segmentation is achieved using information provided by the recognition process. This dilemma can be avoided by techniques that identify sets of regions containing useful information. Such symbol-spotting methods allow the detection of symbols in maps or technical drawings without having to fully segment or fully recognize the entire content.

This unique text/reference provides a complete, integrated and large-scale solution to the challenge of designing a robust symbol-spotting method for collections of graphic-rich documents. The book examines a number of features and descriptors, from basic photometric descriptors commonly used in computer vision techniques to those specific to graphical shapes, presenting a methodology which can be used in a wide variety of applications. Additionally, readers are supplied with an insight into the problem of performance evaluation of spotting methods. Some very basic knowledge of pattern recognition, document image analysis and graphics recognition is assumed.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-84996-208-7 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ RuL2010a Serial 1292
Permanent link to this record
 

 
Author Jose Luis Gomez
Title (up) Synth-to-real semi-supervised learning for visual tasks Type Book Whole
Year 2023 Publication Going beyond Classification Problems for the Continual Learning of Deep Neural Networks Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The curse of data labeling is a costly bottleneck in supervised deep learning, where large amounts of labeled data are needed to train intelligent systems. In onboard perception for autonomous driving, this cost corresponds to the labeling of raw data from sensors such as cameras, LiDARs, RADARs, etc. Therefore, synthetic data with automatically generated ground truth (labels) has aroused as a reliable alternative for training onboard perception models.
However, synthetic data commonly suffers from synth-to-real domain shift, i.e., models trained on the synthetic domain do not show their achievable accuracy when performing in the real world. This shift needs to be addressed by techniques falling in the realm of domain adaptation (DA).
The semi-supervised learning (SSL) paradigm can be followed to address DA. In this case, a model is trained using source data with labels (here synthetic) and leverages minimal knowledge from target data (here the real world) to generate pseudo-labels. These pseudo-labels help the training process to reduce the gap between the source and the target domains. In general, we can assume accessing both, pseudo-labels and a few amounts of human-provided labels for the target-domain data. However, the most interesting and challenging setting consists in assuming that we do not have human-provided labels at all. This setting is known as unsupervised domain adaptation (UDA). This PhD focuses on applying SSL to the UDA setting, for onboard visual tasks related to autonomous driving. We start by addressing the synth-to-real UDA problem on onboard vision-based object detection (pedestrians and cars), a critical task for autonomous driving and driving assistance. In particular, we propose to apply an SSL technique known as co-training, which we adapt to work with deep models that process a multi-modal input. The multi-modality consists of the visual appearance of the images (RGB) and their monocular depth estimation. The synthetic data we use as the source domain contains both, object bounding boxes and depth information. This prior knowledge is the
starting point for the co-training technique, which iteratively labels unlabeled real-world data and uses such pseudolabels (here bounding boxes with an assigned object class) to progressively improve the labeling results. Along this
process, two models collaborate to automatically label the images, in a way that one model compensates for the errors of the other, so avoiding error drift. While this automatic labeling process is done offline, the resulting pseudolabels can be used to train object detection models that must perform in real-time onboard a vehicle. We show that multi-modal co-training improves the labeling results compared to single-modal co-training, remaining competitive compared to human labeling.
Given the success of co-training in the context of object detection, we have also adapted this technique to a more crucial and challenging visual task, namely, onboard semantic segmentation. In fact, providing labels for a single image
can take from 30 to 90 minutes for a human labeler, depending on the content of the image. Thus, developing automatic labeling techniques for this visual task is of great interest to the automotive industry. In particular, the new co-training framework addresses synth-to-real UDA by an initial stage of self-training. Intermediate models arising from this stage are used to start the co-training procedure, for which we have elaborated an accurate collaboration policy between the two models performing the automatic labeling. Moreover, our co-training seamlessly leverages datasets from different synthetic domains. In addition, the co-training procedure is agnostic to the loss function used to train the semantic segmentation models which perform the automatic labeling. We achieve state-of-the-art results on publicly available benchmark datasets, again, remaining competitive compared to human labeling.
Finally, on the ground of our previous experience, we have designed and implemented a new SSL technique for UDA in the context of visual semantic segmentation. In this case, we mimic the labeling methodology followed by human labelers. In particular, rather than labeling full images at a time, categories of semantic classes are defined and only those are labeled in a labeling pass. In fact, different human labelers can become specialists in labeling different categories. Afterward, these per-category-labeled layers are combined to provide fully labeled images. Our technique is inspired by this methodology since we perform synth-to-real UDA per category, using the self-training stage previously developed as part of our co-training framework. The pseudo-labels obtained for each category are finally
fused to obtain fully automatically labeled images. In this context, we have also contributed to the development of a new photo-realistic synthetic dataset based on path-tracing rendering. Our new SSL technique seamlessly leverages publicly available synthetic datasets as well as this new one to obtain state-of-the-art results on synth-to-real UDA for semantic segmentation. We show that the new dataset allows us to reach better labeling accuracy than previously existing datasets, at the same time that it complements well them when combined. Moreover, we also show that the new human-inspired SSL technique outperforms co-training.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Antonio Lopez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Gom2023 Serial 3961
Permanent link to this record
 

 
Author Sergio Escalera; Ralf Herbrich
Title (up) The NeurIPS’18 Competition: From Machine Learning to Intelligent Conversations Type Book Whole
Year 2020 Publication The Springer Series on Challenges in Machine Learning Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This volume presents the results of the Neural Information Processing Systems Competition track at the 2018 NeurIPS conference. The competition follows the same format as the 2017 competition track for NIPS. Out of 21 submitted proposals, eight competition proposals were selected, spanning the area of Robotics, Health, Computer Vision, Natural Language Processing, Systems and Physics. Competitions have become an integral part of advancing state-of-the-art in artificial intelligence (AI). They exhibit one important difference to benchmarks: Competitions test a system end-to-end rather than evaluating only a single component; they assess the practicability of an algorithmic solution in addition to assessing feasibility.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Sergio Escalera; Ralf Hebrick
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2520-1328 ISBN 978-3-030-29134-1 Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ HeE2020 Serial 3328
Permanent link to this record
 

 
Author Miquel Ferrer
Title (up) Theory and Algorithms on the Median Graph. Application to Graph-based Classification and Clustering Type Book Whole
Year 2008 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Francesc Serratosa Casanelles;Ernest Valveny
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition 978-84-935251-7-0 Conference
Notes Approved no
Call Number Admin @ si @ Fer2008 Serial 1105
Permanent link to this record
 

 
Author Josep M. Gonfaus
Title (up) Towards Deep Image Understanding: From pixels to semantics Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Understanding the content of the images is one of the greatest challenges of computer vision. Recognition of objects appearing in images, identifying and interpreting their actions are the main purposes of Image Understanding. This thesis seeks to identify what is present in a picture by categorizing and locating all the objects in the scene.
Images are composed by pixels, and one possibility consists of assigning to each pixel an object category, which is commonly known as semantic segmentation. By incorporating information as a contextual cue, we are able to resolve the ambiguity within categories at the pixel-level. We propose three levels of scale in order to resolve such ambiguity.
Another possibility to represent the objects is the object detection task. In this case, the aim is to recognize and localize the whole object by accurately placing a bounding box around it. We present two new approaches. The first one is focused on improving the object representation of deformable part models with the concept of factorized appearances. The second approach addresses the issue of reducing the computational cost for multi-class recognition. The results given have been validated on several commonly used datasets, reaching international recognition and state-of-the-art within the field
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Theo Gevers
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ Gon2012 Serial 2208
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani
Title (up) Towards Efficient and Robust Convolutional Neural Networks for Single Image Super-Resolution Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Single image super-resolution (SISR) is an important task in image processing which aims to enhance the resolution of imaging systems. Recently, SISR has witnessed great strides with the rapid development of deep learning. Recent advances in SISR are mostly devoted to designing deeper and wider networks to enhance their representation learning capacity. However, as the depth of networks increases, deep learning-based methods are faced with the challenge of computational complexity in practice. Moreover, most existing methods rarely leverage the intermediate features and also do not discriminate the computation of features by their frequencial components, thereby achieving relatively low performance. Aside from the aforementioned problems, another desired ability is to upsample images to arbitrary scales using a single model. Most current SISR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements. In this thesis, we address the aforementioned issues and propose solutions to them: i) We present a novel frequency-based enhancement block which treats different frequencies in a heterogeneous way and also models inter-channel dependencies, which consequently enrich the output feature. Thus it helps the network generate more discriminative representations by explicitly recovering finer details. ii) We introduce OverNet which contains two main parts: a lightweight feature extractor that follows a novel recursive framework of skip and dense connections to reduce low-level feature degradation, and an overscaling module that generates an accurate SR image by internally constructing an overscaled intermediate representation of the output features. Then, to solve the problem of reconstruction at arbitrary scale factors, we introduce a novel multi-scale loss, that allows the simultaneous training of all scale factors using a single model. iii) We propose a directional variance attention network which leverages a novel attention mechanism to enhance features in different channels and spatial regions. Moreover, we introduce a novel procedure for using attention mechanisms together with residual blocks to facilitate the preservation of finer details. Finally, we demonstrate that our approaches achieve considerably better performance than previous state-of-the-art methods, in terms of both quantitative and visual quality.
Address April, 2022
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Jordi Gonzalez;Xavier Roca;Pau Rodriguez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-1-7 Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ Beh2022 Serial 3713
Permanent link to this record
 

 
Author Lichao Zhang
Title (up) Towards end-to-end Networks for Visual Tracking in RGB and TIR Videos Type Book Whole
Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In the current work, we identify several problems of current tracking systems. The lack of large-scale labeled datasets hampers the usage of deep learning, especially end-to-end training, for tracking in TIR images. Therefore, many methods for tracking on TIR data are still based on hand-crafted features. This situation also happens in multi-modal tracking, e.g. RGB-T tracking. Another reason, which hampers the development of RGB-T tracking, is that there exists little research on the fusion mechanisms for combining information from RGB and TIR modalities. One of the crucial components of most trackers is the update module. For the currently existing end-to-end tracking architecture, e.g, Siamese trackers, the online model update is still not taken into consideration at the training stage. They use no-update or a linear update strategy during the inference stage. While such a hand-crafted approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update.

To address the data-scarcity for TIR and RGB-T tracking, we use image-to-image translation to generate a large-scale synthetic TIR dataset. This dataset allows us to perform end-to-end training for TIR tracking. Furthermore, we investigate several fusion mechanisms for RGB-T tracking. The multi-modal trackers are also trained in an end-to-end manner on the synthetic data. To improve the standard online update, we pose the updating step as an optimization problem which can be solved by training a neural network. Our approach thereby reduces the hand-crafted components in the tracking pipeline and sets a further step in the direction of a complete end-to-end trained tracking network which also considers updating during optimization.
Address November 2019
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Abel Gonzalez;Fahad Shahbaz Khan
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-1210011-1-9 Medium
Area Expedition Conference
Notes LAMP; 600.141; 600.120 Approved no
Call Number Admin @ si @ Zha2019 Serial 3393
Permanent link to this record
 

 
Author Fei Yang
Title (up) Towards Practical Neural Image Compression Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Images and videos are pervasive in our life and communication. With advances in smart and portable devices, high capacity communication networks and high definition cinema, image and video compression are more relevant than ever. Traditional block-based linear transform codecs such as JPEG, H.264/AVC or the recent H.266/VVC are carefully designed to meet not only the rate-distortion criteria, but also the practical requirements of applications.
Recently, a new paradigm based on deep neural networks (i.e., neural image/video compression) has become increasingly popular due to its ability to learn powerful nonlinear transforms and other coding tools directly from data instead of being crafted by humans, as was usual in previous coding formats. While achieving excellent rate-distortion performance, these approaches are still limited mostly to research environments due to heavy models and other practical limitations, such as being limited to function on a particular rate and due to high memory and computational cost. In this thesis, we study these practical limitations, and designing more practical neural image compression approaches.
After analyzing the differences between traditional and neural image compression, our first contribution is the modulated autoencoder (MAE), a framework that includes a mechanism to provide multiple rate-distortion options within a single model with comparable performance to independent models. In a second contribution, we propose the slimmable compressive autoencoder (SlimCAE), which in addition to variable rate, can optimize the complexity of the model and thus reduce significantly the memory and computational burden.
Modern generative models can learn custom image transformation directly from suitable datasets following encoder-decoder architectures, task known as image-to-image (I2I) translation. Building on our previous work, we study the problem of distributed I2I translation, where the latent representation is transmitted through a binary channel and decoded in a remote receiving side. We also propose a variant that can perform both translation and the usual autoencoding functionality.
Finally, we also consider neural video compression, where the autoencoder is typically augmented with temporal prediction via motion compensation. One of the main bottlenecks of that framework is the optical flow module that estimates the displacement to predict the next frame. Focusing on this module, we propose a method that improves the accuracy of the optical flow estimation and a simplified variant that reduces the computational cost.
Key words: neural image compression, neural video compression, optical flow, practical neural image compression, compressive autoencoders, image-to-image translation, deep learning.
Address December 2021
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Luis Herranz;Mikhail Mozerov;Yongmei Cheng
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-7-8 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Yan2021 Serial 3608
Permanent link to this record
 

 
Author Pau Rodriguez
Title (up) Towards Robust Neural Models for Fine-Grained Image Recognition Type Book Whole
Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Fine-grained recognition, i.e. identifying similar subcategories of the same superclass, is central to human activity. Recognizing a friend, finding bacteria in microscopic imagery, or discovering a new kind of galaxy, are just but few examples. However, fine-grained image recognition is still a challenging computer vision task since the differences between two images of the same category can overwhelm the differences between two images of different fine-grained categories. In this regime, where the difference between two categories resides on subtle input changes, excessively invariant CNNs discard those details that help to discriminate between categories and focus on more obvious changes, yielding poor classification performance.
On the other hand, CNNs with too much capacity tend to memorize instance-specific details, thus causing overfitting. In this thesis,motivated by the
potential impact of automatic fine-grained image recognition, we tackle the previous challenges and demonstrate that proper alignment of the inputs, multiple levels of attention, regularization, and explicitmodeling of the output space, results inmore accurate fine-grained recognitionmodels, that generalize better, and are more robust to intra-class variation. Concretely, we study the different stages of the neural network pipeline: input pre-processing, attention to regions, feature activations, and the label space. In each stage, we address different issues that hinder the recognition performance on various fine-grained tasks, and devise solutions in each chapter: i)We deal with the sensitivity to input alignment on fine-grained human facial motion such as pain. ii) We introduce an attention mechanism to allow CNNs to choose and process in detail the most discriminate regions of the image. iii)We further extend attention mechanisms to act on the network activations,
thus allowing them to correct their predictions by looking back at certain
regions, at different levels of abstraction. iv) We propose a regularization loss to prevent high-capacity neural networks to memorize instance details by means of almost-identical feature detectors. v)We finally study the advantages of explicitly modeling the output space within the error-correcting framework. As a result, in this thesis we demonstrate that attention and regularization seem promising directions to overcome the problems of fine-grained image recognition, as well as proper treatment of the input and the output space.
Address March 2019
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Josep M. Gonfaus;Xavier Roca
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-948531-3-5 Medium
Area Expedition Conference
Notes ISE; 600.119 Approved no
Call Number Admin @ si @ Rod2019 Serial 3258
Permanent link to this record
 

 
Author Diego Velazquez
Title (up) Towards Robustness in Computer-based Image Understanding Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This thesis embarks on an exploratory journey into robustness in deep learning,
with a keen focus on the intertwining facets of generalization, explainability, and
edge cases within the realm of computer vision. In deep learning, robustness
epitomizes a model’s resilience and flexibility, grounded on its capacity to generalize across diverse data distributions, explain its predictions transparently, and navigate the intricacies of edge cases effectively. The challenges associated with robust generalization are multifaceted, encompassing the model’s performance on unseen data and its defense against out-of-distribution data and adversarial attacks. Bridging this gap, the potential of Embedding Propagation (EP) for improving out-of-distribution generalization is explored. EP is depicted as a powerful tool facilitating manifold smoothing, which in turn fortifies the model’s robustness against adversarial onslaughts and bolsters performance in few-shot and self-/semi-supervised learning scenarios. In the labyrinth of deep learning models, the path to robustness often intersects with explainability. As model complexity increases, so does the urgency to decipher their decision-making
processes. Acknowledging this, the thesis introduces a robust framework for
evaluating and comparing various counterfactual explanation methods, echoing
the imperative of explanation quality over quantity and spotlighting the intricacies of diversifying explanations. Simultaneously, the deep learning landscape is fraught with edge cases – anomalies in the form of small objects or rare instances in object detection tasks that defy the norm. Confronting this, the
thesis presents an extension of the DETR (DEtection TRansformer) model to enhance small object detection. The devised DETR-FP, embedding the Feature Pyramid technique, demonstrating improvement in small objects detection accuracy, albeit facing challenges like high computational costs. With emergence of foundation models in mind, the thesis unveils EarthView, the largest scale remote sensing dataset to date, built for the self-supervised learning of a robust foundational model for remote sensing. Collectively, these studies contribute to the grand narrative of robustness in deep learning, weaving together the strands of generalization, explainability, and edge case performance. Through these methodological advancements and novel datasets, the thesis calls for continued exploration, innovation, and refinement to fortify the bastion of robust computer vision.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Jordi Gonzalez;Josep M. Gonfaus;Pau Rodriguez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-81-126409-5-3 Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ Vel2023 Serial 3965
Permanent link to this record
 

 
Author Vacit Oguz Yazici
Title (up) Towards Smart Fashion: Visual Recognition of Products and Attributes Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Artificial intelligence is innovating the fashion industry by proposing new applications and solutions to the problems encountered by researchers and engineers working in the industry. In this thesis, we address three of these problems. In the first part of the thesis, we tackle the problem of multi-label image classification which is very related to fashion attribute recognition. In the second part of the thesis, we address two problems that are specific to fashion. Firstly, we address the problem of main product detection which is the task of associating correct image parts (e.g. bounding boxes) with the fashion product being sold. Secondly, we address the problem of color naming for multicolored fashion items. The task of multi-label image classification consists in assigning various concepts such as objects or attributes to images. Usually, there are dependencies that can be learned between the concepts to capture label correlations (chair and table classes are more likely to co-exist than chair and giraffe).
If we treat the multi-label image classification problem as an orderless set prediction problem, we can exploit recurrent neural networks (RNN) to capture label correlations. However, RNNs are trained to predict ordered sequences of tokens, so if the order of the predicted sequence is different than the order of the ground truth sequence, there will be penalization although the predictions are correct. Therefore, in the first part of the thesis, we propose an orderless loss function which will order the labels in the ground truth sequence dynamically in a way that the minimum loss is achieved. This results in a significant improvement of RNN models on multi-label image classification over the previous methods.
However, RNNs suffer from long term dependencies when the cardinality of set grows bigger. The decoding process might stop early if the current hidden state cannot find any object and outputs the termination token. This would cause the remaining classes not to be predicted and lower recall metric. Transformers can be used to avoid the long term dependency problem exploiting their selfattention modules that process sequential data simultaneously. Consequently, we propose a novel transformer model for multi-label image classification which surpasses the state-of-the-art results by a large margin.
In the second part of thesis, we focus on two fashion-specific problems. Main product detection is the task of associating image parts with the fashion product that is being sold, generally using associated textual metadata (product title or description). Normally, in fashion e-commerces, products are represented by multiple images where a person wears the product along with other fashion items. If all the fashion items in the images are marked with bounding boxes, we can use the textual metadata to decide which item is the main product. The initial work treated each of these images independently, discarding the fact that they all belong to the same product. In this thesis, we represent the bounding boxes from all the images as nodes in a fully connected graph. This allows the algorithm to learn relations between the nodes during training and take the entire context into account for the final decision. Our algorithm results in a significant improvement of the state-ofthe-art.
Moreover, we address the problem of color naming for multicolored fashion items, which is a challenging task due to the external factors such as illumination changes or objects that act as clutter. In the context of multi-label classification, the vaguely defined lines between the classes in the color space cause ambiguity. For example, a shade of blue which is very close to green might cause the model to incorrectly predict the color blue and green at the same time. Based on this, models trained for color naming are expected to recognize the colors and their quantities in both single colored and multicolored fashion items. Therefore, in this thesis, we propose a novel architecture with an additional head that explicitly estimates the number of colors in fashion items. This removes the ambiguity problem and results in better color naming performance.
Address January 2022
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Arnau Ramisa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-6-1 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Ogu2022 Serial 3631
Permanent link to this record
 

 
Author Shiqi Yang
Title (up) Towards Source-Free Domain Adaption of Neural Networks in an Open World Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Though they achieve great success, deep neural networks typically require a huge
amount of labeled data for training. However, collecting labeled data is often laborious and expensive. It would, therefore, be ideal if the knowledge obtained from label-rich datasets could be transferred to unlabeled data. However, deep networks are weak at generalizing to unseen domains, even when the differences are only subtle between the datasets. In real-world situations, a typical factor impairing the model generalization ability is the distribution shift between data from different domains, which is a long-standing problem usually termed as (unsupervised) domain adaptation.
A crucial requirement in the methodology of these domain adaptation methods is that they require access to source domain data during the adaptation process to the target domain. Accessibility to the source data of a trained source model is often impossible in real-world applications, for example, when deploying domain adaptation algorithms on mobile devices where the computational capacity is limited or in situations where data privacy rules limit access to the source domain data. Without access to the source domain data, existing methods suffer from inferior performance. Thus, in this thesis, we investigate domain adaptation without source data (termed as source-free domain adaptation) in multiple different scenarios that focus on image classification tasks.
We first study the source-free domain adaptation problem in a closed-set setting,
where the label space of different domains is identical. Only accessing the pretrained source model, we propose to address source-free domain adaptation from the perspective of unsupervised clustering. We achieve this based on nearest neighborhood clustering. In this way, we can transfer the challenging source-free domain adaptation task to a type of clustering problem. The final optimization objective is an upper bound containing only two simple terms, which can be explained as discriminability and diversity. We show that this allows us to relate several other methods in domain adaptation, unsupervised clustering and contrastive learning via the perspective of discriminability and diversity.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Joost
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-3-9 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Yan2023 Serial 3963
Permanent link to this record
 

 
Author Bonifaz Stuhr
Title (up) Towards Unsupervised Representation Learning: Learning, Evaluating and Transferring Visual Representations Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Unsupervised representation learning aims at finding methods that learn representations from data without annotation-based signals. Abstaining from annotations not only leads to economic benefits but may – and to some extent already does – result in advantages regarding the representation’s structure, robustness, and generalizability to different tasks. In the long run, unsupervised methods are expected to surpass their supervised counterparts due to the reduction of human intervention and the inherently more general setup that does not bias the optimization towards an objective originating from specific annotation-based signals. While major advantages of unsupervised representation learning have been recently observed in natural language processing, supervised methods still dominate in vision domains for most tasks. In this dissertation, we contribute to the field of unsupervised (visual) representation learning from three perspectives: (i) Learning representations: We design unsupervised, backpropagation-free Convolutional Self-Organizing Neural Networks (CSNNs) that utilize self-organization- and Hebbian-based learning rules to learn convolutional kernels and masks to achieve deeper backpropagation-free models. Thereby, we observe that backpropagation-based and -free methods can suffer from an objective function mismatch between the unsupervised pretext task and the target task. This mismatch can lead to performance decreases for the target task. (ii) Evaluating representations: We build upon the widely used (non-)linear evaluation protocol to define pretext- and target-objective-independent metrics for measuring the objective function mismatch. With these metrics, we evaluate various pretext and target tasks and disclose dependencies of the objective function mismatch concerning different parts of the training and model setup. (iii) Transferring representations: We contribute CARLANE, the first 3-way sim-to-real domain adaptation benchmark for 2D lane detection. We adopt several well-known unsupervised domain adaptation methods as baselines and propose a method based on prototypical cross-domain self-supervised learning. Finally, we focus on pixel-based unsupervised domain adaptation and contribute a content-consistent unpaired image-to-image translation method that utilizes masks, global and local discriminators, and similarity sampling to mitigate content inconsistencies, as well as feature-attentive denormalization to fuse content-based statistics into the generator stream. In addition, we propose the cKVD metric to incorporate class-specific content inconsistencies into perceptual metrics for measuring translation quality.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIA Place of Publication Editor Jordi Gonzalez;Jurgen Brauer
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-6-0 Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ Stu2023 Serial 3966
Permanent link to this record
 

 
Author Carles Sanchez
Title (up) Tracheal Structure Characterization using Geometric and Appearance Models for Efficient Assessment of Stenosis in Videobronchoscopy Type Book Whole
Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Recent advances in endoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures. Among all endoscopic modalities, bronchoscopy is one of the most frequent with around 261 millions of procedures per year. Although the use of bronchoscopy is spread among clinical facilities it presents some drawbacks, being the visual inspection for the assessment of anatomical measurements the most prevalent of them. In
particular, inaccuracies in the estimation of the degree of stenosis (the percentage of obstructed airway) decreases its diagnostic yield and might lead to erroneous treatments. An objective computation of tracheal stenosis in bronchoscopy videos would constitute a breakthrough for this non-invasive technique and a reduction in treatment cost.
This thesis settles the first steps towards on-line reliable extraction of anatomical information from videobronchoscopy for computation of objective measures. In particular, we focus on the computation of the degree of stenosis, which is obtained by comparing the area delimited by a healthy tracheal ring and the stenosed lumen. Reliable extraction of airway structures in interventional videobronchoscopy is a challenging task. This is mainly due to the large variety of acquisition conditions (positions and illumination), devices (different digitalizations) and in videos acquired at the operating room the unpredicted presence of surgical devices (such as probe ends). This thesis contributes to on-line stenosis assessment in several ways. We
propose a parametric strategy for the extraction of lumen and tracheal rings regions based on the characterization of their geometry and appearance that guide a deformable model. The geometric and appearance characterization is based on a physical model describing the way bronchoscopy images are obtained and includes local and global descriptions. In order to ensure a systematic applicability we present a statistical framework to select the optimal
parameters of our method. Experiments perform on the first public annotated database, show that the performance of our method is comparable to the one provided by clinicians and its computation time allows for a on-line implementation in the operating room.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor F. Javier Sanchez;Debora Gil;Jorge Bernal
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-940902-9-5 Medium
Area Expedition Conference
Notes IAM; 600.075 Approved no
Call Number Admin @ si @ San2014 Serial 2575
Permanent link to this record