toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author David Roche edit  openurl
  Title (up) A Statistical Framework for Terminating Evolutionary Algorithms at their Steady State Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract As any iterative technique, it is a necessary condition a stop criterion for terminating Evolutionary Algorithms (EA). In the case of optimization methods, the algorithm should stop at the time it has reached a steady state so it can not improve results anymore. Assessing the reliability of termination conditions for EAs is of prime importance. A wrong or weak stop criterion can negatively a ect both the computational e ort and the nal result.
In this Thesis, we introduce a statistical framework for assessing whether a termination condition is able to stop EA at its steady state. In one hand a numeric approximation to steady states to detect the point in which EA population has lost its diversity has been presented for EA termination. This approximation has been applied to di erent EA paradigms based on diversity and a selection of functions covering the properties most relevant for EA convergence. Experiments show that our condition works regardless of the search space dimension and function landscape and Di erential Evolution (DE) arises as the best paradigm. On the other hand, we use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in xspace.
Our theoretical framework is analyzed across several benchmark test functions
and two standard termination criteria based on function improvement in f-space and EA population x-space distribution for the DE paradigm. Results validate our statistical framework as a powerful tool for determining the capability of a measure for terminating EA and select the x-space distribution as the best-suited for accurately stopping DE in real-world applications.
 
  Address July 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Jesus Giraldo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Roc2015 Serial 2686  
Permanent link to this record
 

 
Author Joan Mas edit  isbn
openurl 
  Title (up) A Syntactic Pattern Recognition Approach based on a Distribution Tolerant Adjacency Grammar and a Spatial Indexed Parser. Application to Sketched Document Recognition Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sketch recognition is a discipline which has gained an increasing interest in the last
20 years. This is due to the appearance of new devices such as PDA, Tablet PC’s
or digital pen & paper protocols. From the wide range of sketched documents we
focus on those that represent structured documents such as: architectural floor-plans,
engineering drawing, UML diagrams, etc. To recognize and understand these kinds
of documents, first we have to recognize the different compounding symbols and then
we have to identify the relations between these elements. From the way that a sketch
is captured, there are two categories: on-line and off-line. On-line input modes refer
to draw directly on a PDA or a Tablet PC’s while off-line input modes refer to scan
a previously drawn sketch.
This thesis is an overlapping of three different areas on Computer Science: Pattern
Recognition, Document Analysis and Human-Computer Interaction. The aim of this
thesis is to interpret sketched documents independently on whether they are captured
on-line or off-line. For this reason, the proposed approach should contain the following
features. First, as we are working with sketches the elements present in our input
contain distortions. Second, as we would work in on-line or off-line input modes, the
order in the input of the primitives is indifferent. Finally, the proposed method should
be applied in real scenarios, its response time must be slow.
To interpret a sketched document we propose a syntactic approach. A syntactic
approach is composed of two correlated components: a grammar and a parser. The
grammar allows describing the different elements on the document as well as their
relations. The parser, given a document checks whether it belongs to the language
generated by the grammar or not. Thus, the grammar should be able to cope with
the distortions appearing on the instances of the elements. Moreover, it would be
necessary to define a symbol independently of the order of their primitives. Concerning to the parser when analyzing 2D sentences, it does not assume an order in the
primitives. Then, at each new primitive in the input, the parser searches among the
previous analyzed symbols candidates to produce a valid reduction.
Taking into account these features, we have proposed a grammar based on Adjacency Grammars. This kind of grammars defines their productions as a multiset
of symbols rather than a list. This allows describing a symbol without an order in
their components. To cope with distortion we have proposed a distortion model.
This distortion model is an attributed estimated over the constraints of the grammar and passed through the productions. This measure gives an idea on how far is the
symbol from its ideal model. In addition to the distortion on the constraints other
distortions appear when working with sketches. These distortions are: overtracing,
overlapping, gaps or spurious strokes. Some grammatical productions have been defined to cope with these errors. Concerning the recognition, we have proposed an
incremental parser with an indexation mechanism. Incremental parsers analyze the
input symbol by symbol given a response to the user when a primitive is analyzed.
This makes incremental parser suitable to work in on-line as well as off-line input
modes. The parser has been adapted with an indexation mechanism based on a spatial division. This indexation mechanism allows setting the primitives in the space
and reducing the search to a neighbourhood.
A third contribution is a grammatical inference algorithm. This method given a
set of symbols captures the production describing it. In the field of formal languages,
different approaches has been proposed but in the graphical domain not so much work
is done in this field. The proposed method is able to capture the production from
a set of symbol although they are drawn in different order. A matching step based
on the Haussdorff distance and the Hungarian method has been proposed to match
the primitives of the different symbols. In addition the proposed approach is able to
capture the variability in the parameters of the constraints.
From the experimental results, we may conclude that we have proposed a robust
approach to describe and recognize sketches. Moreover, the addition of new symbols
to the alphabet is not restricted to an expert. Finally, the proposed approach has
been used in two real scenarios obtaining a good performance.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Gemma Sanchez;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-4-0 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ Mas2010 Serial 1334  
Permanent link to this record
 

 
Author Cesar de Souza edit  openurl
  Title (up) Action Recognition in Videos: Data-efficient approaches for supervised learning of human action classification models for video Type Book Whole
  Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this dissertation, we explore different ways to perform human action recognition in video clips. We focus on data efficiency, proposing new approaches that alleviate the need for laborious and time-consuming manual data annotation. In the first part of this dissertation, we start by analyzing previous state-of-the-art models, comparing their differences and similarities in order to pinpoint where their real strengths come from. Leveraging this information, we then proceed to boost the classification accuracy of shallow models to levels that rival deep neural networks. We introduce hybrid video classification architectures based on carefully designed unsupervised representations of handcrafted spatiotemporal features classified by supervised deep networks. We show in our experiments that our hybrid model combine the best of both worlds: it is data efficient (trained on 150 to 10,000 short clips) and yet improved significantly on the state of the art, including deep models trained on millions of manually labeled images and videos. In the second part of this research, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. It contains a total of 39,982 videos, with more than 1,000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We then introduce deep multi-task representation learning architectures to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, outperforming fine-tuning state-of-the-art unsupervised generative models of videos.  
  Address April 2018  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Naila Murray  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Sou2018 Serial 3127  
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li edit  url
openurl 
  Title (up) Advances in Face Presentation Attack Detection Type Book Whole
  Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ WGE2023a Serial 3955  
Permanent link to this record
 

 
Author Yi Xiao edit  isbn
openurl 
  Title (up) Advancing Vision-based End-to-End Autonomous Driving Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In autonomous driving, artificial intelligence (AI) processes the traffic environment to drive the vehicle to a desired destination. Currently, there are different paradigms that address the development of AI-enabled drivers. On the one hand, we find modular pipelines, which divide the driving task into sub-tasks such as perception, maneuver planning, and control. On the other hand, we find end-to-end driving approaches that attempt to learn the direct mapping of raw data from input sensors to vehicle control signals. The latter are relatively less studied but are gaining popularity as they are less demanding in terms of data labeling. Therefore, in this thesis, our goal is to investigate end-to-end autonomous driving.
We propose to evaluate three approaches to tackle the challenge of end-to-end
autonomous driving. First, we focus on the input, considering adding depth information as complementary to RGB data, in order to mimic the human being’s
ability to estimate the distance to obstacles. Notice that, in the real world, these depth maps can be obtained either from a LiDAR sensor, or a trained monocular
depth estimation module, where human labeling is not needed. Then, based on
the intuition that the latent space of end-to-end driving models encodes relevant
information for driving, we use it as prior knowledge for training an affordancebased driving model. In this case, the trained affordance-based model can achieve good performance while requiring less human-labeled data, and it can provide interpretability regarding driving actions. Finally, we present a new pure vision-based end-to-end driving model termed CIL++, which is trained by imitation learning.
CIL++ leverages modern best practices, such as a large horizontal field of view and
a self-attention mechanism, which are contributing to the agent’s understanding of
the driving scene and bringing a better imitation of human drivers. Using training
data without any human labeling, our model yields almost expert performance in
the CARLA NoCrash benchmark and could rival SOTA models that require large amounts of human-labeled data.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-4-6 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Xia2023 Serial 3964  
Permanent link to this record
 

 
Author Antonio Esteban Lansaque edit  isbn
openurl 
  Title (up) An Endoscopic Navigation System for Lung Cancer Biopsy Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Lung cancer is one of the most diagnosed cancers among men and women. Actually,
lung cancer accounts for 13% of the total cases with a 5-year global survival
rate in patients. Although Early detection increases survival rate from 38% to 67%, accurate diagnosis remains a challenge. Pathological confirmation requires extracting a sample of the lesion tissue for its biopsy. The preferred procedure for tissue biopsy is called bronchoscopy. A bronchoscopy is an endoscopic technique for the internal exploration of airways which facilitates the performance of minimal invasive interventions with low risk for the patient. Recent advances in bronchoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures, like lung cancer biopsy sampling. Despite the improvement in bronchoscopic device quality, there is a lack of intelligent computational systems for supporting in-vivo clinical decision during examinations. Existing technologies fail to accurately reach the lesion due to several aspects at intervention off-line planning and poor intra-operative guidance at exploration time. Existing guiding systems radiate patients and clinical staff,might be expensive and achieve a suboptimlal 70% of yield boost. Diagnostic yield could be improved reducing radiation and costs by developing intra-operative support systems able to guide the bronchoscopist to the lesion during the intervention. The goal of this PhD thesis is to develop an image-based navigation systemfor intra-operative guidance of bronchoscopists to a target lesion across a path previously planned on a CT-scan. We propose a 3D navigation system which uses the anatomy of video bronchoscopy frames to locate the bronchoscope within the airways. Once the bronchoscope is located, our navigation system is able to indicate the bifurcation which needs to be followed to reach the lesion. In order to facilitate an off-line validation
as realistic as possible, we also present a method for augmenting simulated virtual bronchoscopies with the appearance of intra-operative videos. Experiments performed on augmented and intra-operative videos, prove that our algorithm can be speeded up for an on-line implementation in the operating room.
 
  Address October 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Carles Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-0-2 Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ Est2019 Serial 3392  
Permanent link to this record
 

 
Author Joan Mas; Gemma Sanchez; Josep Llados edit  openurl
  Title (up) An Incremental Parser to Recognize Diagram Symbols and Gestures represented by Adjacency Grammars Type Book Whole
  Year 2006 Publication Graphics Recognition: Ten Years Review and Future Perspectives, W. Liu, J. Llados (Eds.), LNCS 3926: 252–263 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ MSL2006a Serial 711  
Permanent link to this record
 

 
Author David Rotger edit  openurl
  Title (up) Analysis and Multi-Modal Fusion of coronary Images Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The framework of this thesis is to study in detail different techniques and tools for medical image registration in order to ease the daily life of clinical experts in cardiology. The first aim of this thesis is providing computer tools for
fusing IVUS and angiogram data is of high clinical interest to help the physicians locate in IVUS data and decide which lesion is observed, how long it is, how far from a bifurcation or another lesions stays, etc. This thesis proves and
validates that we can segment the catheter path in angiographies using geodesic snakes (based on fast marching algorithm), a three-dimensional reconstruction of the catheter inspired in stereo vision and a new technique to fuse IVUS
and angiograms that establishes exact correspondences between them. We have developed a new workstation called iFusion that has four strong advantages: registration of IVUS and angiographic images with sub-pixel precision, it works on- and off-line, it is independent on the X-ray system and there is no need of daily calibration. The second aim of the thesis is devoted to developing a computer-aided analysis of IVUS for image-guided intervention. We have designed, implemented
and validated a robust algorithm for stent extraction and reconstruction from IVUS videos. We consider a very special and recent kind of stents, bioabsorbable stents that represent a great clinical challenge due to their property to be
absorbed by time and thus avoiding the “danger” of neostenosis as one of the main problems of metallic stents. We present a new and very promising algorithm based on an optimized cascade of multiple classifiers to automatically detect individual stent struts of a very novel bioabsorbable drug eluting coronary stent. This problem represents a very challenging target given the variability in contrast, shape and grey levels of the regions to be detected, what is
denoted by the high variability between the specialists (inter-observer variability of 0.14~$\pm$0.12). The obtained results of the automatic strut detection are within the inter-observer variability.
 
  Address Barcelona (Espanya)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Rot2009 Serial 1261  
Permanent link to this record
 

 
Author Albert Berenguel edit  isbn
openurl 
  Title (up) Analysis of background textures in banknotes and identity documents for counterfeit detection Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Counterfeiting and piracy are a form of theft that has been steadily growing in recent years. A counterfeit is an unauthorized reproduction of an authentic/genuine object. Banknotes and identity documents are two common objects of counterfeiting. The former is used by organized criminal groups to finance a variety of illegal activities or even to destabilize entire countries due the inflation effect. Generally, in order to run their illicit businesses, counterfeiters establish companies and bank accounts using fraudulent identity documents. The illegal activities generated by counterfeit banknotes and identity documents has a damaging effect on business, the economy and the general population. To fight against counterfeiters, governments and authorities around the globe cooperate and develop security features to protect their security documents. Many of the security features in identity documents can also be found in banknotes. In this dissertation we focus our efforts in detecting the counterfeit banknotes and identity documents by analyzing the security features at the background printing. Background areas on secure documents contain fine-line patterns and designs that are difficult to reproduce without the manufacturers cutting-edge printing equipment. Our objective is to find the loose of resolution between the genuine security document and the printed counterfeit version with a publicly available commercial printer. We first present the most complete survey to date in identity and banknote security features. The compared algorithms and systems are based on computer vision and machine learning. Then we advance to present the banknote and identity counterfeit dataset we have built and use along all this thesis. Afterwards, we evaluate and adapt algorithms in the literature for the security background texture analysis. We study this problem from the point of view of robustness, computational efficiency and applicability into a real and non-controlled industrial scenario, proposing key insights to use these algorithms. Next, within the industrial environment of this thesis, we build a complete service oriented architecture to detect counterfeit documents. The mobile application and the server framework intends to be used even by non-expert document examiners to spot counterfeits. Later, we re-frame the problem of background texture counterfeit detection as a full-reference game of spotting the differences, by alternating glimpses between a counterfeit and a genuine background using recurrent neural networks. Finally, we deal with the lack of counterfeit samples, studying different approaches based on anomaly detection.  
  Address November 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Oriol Ramos Terrades;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-2-6 Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ Ber2019 Serial 3395  
Permanent link to this record
 

 
Author Onur Ferhat edit  isbn
openurl 
  Title (up) Analysis of Head-Pose Invariant, Natural Light Gaze Estimation Methods Type Book Whole
  Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Eye tracker devices have traditionally been only used inside laboratories, requiring trained professionals and elaborate setup mechanisms. However, in the recent years the scientific work on easier–to–use eye trackers which require no special hardware—other than the omnipresent front facing cameras in computers, tablets, and mobiles—is aiming at making this technology common–place. These types of trackers have several extra challenges that make the problem harder, such as low resolution images provided by a regular webcam, the changing ambient lighting conditions, personal appearance differences, changes in head pose, and so on. Recent research in the field has focused on all these challenges in order to provide better gaze estimation performances in a real world setup.

In this work, we aim at tackling the gaze tracking problem in a single camera setup. We first analyze all the previous work in the field, identifying the strengths and weaknesses of each tried idea. We start our work on the gaze tracker with an appearance–based gaze estimation method, which is the simplest idea that creates a direct mapping between a rectangular image patch extracted around the eye in a camera image, and the gaze point (or gaze direction). Here, we do an extensive analysis of the factors that affect the performance of this tracker in several experimental setups, in order to address these problems in future works. In the second part of our work, we propose a feature–based gaze estimation method, which encodes the eye region image into a compact representation. We argue that this type of representation is better suited to dealing with head pose and lighting condition changes, as it both reduces the dimensionality of the input (i.e. eye image) and breaks the direct connection between image pixel intensities and the gaze estimation. Lastly, we use a face alignment algorithm to have robust face pose estimation, using a 3D model customized to the subject using the tracker. We combine this with a convolutional neural network trained on a large dataset of images to build a face pose invariant gaze tracker.
 
  Address September 2017  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Fernando Vilariño  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-5-6 Medium  
  Area Expedition Conference  
  Notes MV Approved no  
  Call Number Admin @ si @ Fer2017 Serial 3018  
Permanent link to this record
 

 
Author Sergio Vera edit  isbn
openurl 
  Title (up) Anatomic Registration based on Medial Axis Parametrizations Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of di erent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to speci c anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at speci c locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the de nition of a depth coordinate. However, given that di erent methods for generation of medial surfaces generate di erent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Miguel Angel Gonzalez Ballester  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-8-3 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Ver2015 Serial 2708  
Permanent link to this record
 

 
Author Pierluigi Casale edit  openurl
  Title (up) Approximate Ensemble Methods for Physical Activity Recognition Applications Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The main interest of this thesis focuses on computational methodologies able to
reduce the degree of complexity of learning algorithms and its application to physical
activity recognition.
Random Projections will be used to reduce the computational complexity in Multiple Classifier Systems. A new boosting algorithm and a new one-class classification
methodology have been developed. In both cases, random projections are used for
reducing the dimensionality of the problem and for generating diversity, exploiting in
this way the benefits that ensembles of classifiers provide in terms of performances
and stability. Moreover, the new one-class classification methodology, based on an ensemble strategy able to approximate a multidimensional convex-hull, has been proved
to over-perform state-of-the-art one-class classification methodologies.
The practical focus of the thesis is towards Physical Activity Recognition. A new
hardware platform for wearable computing application has been developed and used
for collecting data of activities of daily living allowing to study the optimal features
set able to successful classify activities.
Based on the classification methodologies developed and the study conducted on
physical activity classification, a machine learning architecture capable to provide a
continuous authentication mechanism for mobile-devices users has been worked out,
as last part of the thesis. The system, based on a personalized classifier, states on
the analysis of the characteristic gait patterns typical of each individual ensuring an
unobtrusive and continuous authentication mechanism
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Oriol Pujol;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Cas2011 Serial 1837  
Permanent link to this record
 

 
Author Adriana Romero edit  openurl
  Title (up) Assisting the training of deep neural networks with applications to computer vision Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep learning has recently been enjoying an increasing popularity due to its success in solving challenging tasks. In particular, deep learning has proven to be effective in a large variety of computer vision tasks, such as image classification, object recognition and image parsing. Contrary to previous research, which required engineered feature representations, designed by experts, in order to succeed, deep learning attempts to learn representation hierarchies automatically from data. More recently, the trend has been to go deeper with representation hierarchies.
Learning (very) deep representation hierarchies is a challenging task, which
involves the optimization of highly non-convex functions. Therefore, the search
for algorithms to ease the learning of (very) deep representation hierarchies from data is extensive and ongoing.
In this thesis, we tackle the challenging problem of easing the learning of (very) deep representation hierarchies. We present a hyper-parameter free, off-the-shelf, simple and fast unsupervised algorithm to discover hidden structure from the input data by enforcing a very strong form of sparsity. We study the applicability and potential of the algorithm to learn representations of varying depth in a handful of applications and domains, highlighting the ability of the algorithm to provide discriminative feature representations that are able to achieve top performance.
Yet, while emphasizing the great value of unsupervised learning methods when
labeled data is scarce, the recent industrial success of deep learning has revolved around supervised learning. Supervised learning is currently the focus of many recent research advances, which have shown to excel at many computer vision tasks. Top performing systems often involve very large and deep models, which are not well suited for applications with time or memory limitations. More in line with the current trends, we engage in making top performing models more efficient, by designing very deep and thin models. Since training such very deep models still appears to be a challenging task, we introduce a novel algorithm that guides the training of very thin and deep models by hinting their intermediate representations.
Very deep and thin models trained by the proposed algorithm end up extracting feature representations that are comparable or even better performing
than the ones extracted by large state-of-the-art models, while compellingly
reducing the time and memory consumption of the model.
 
  Address October 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Carlo Gatta;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Rom2015 Serial 2707  
Permanent link to this record
 

 
Author Zhijie Fang edit  isbn
openurl 
  Title (up) Behavior understanding of vulnerable road users by 2D pose estimation Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians
and cyclists can be critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, therefore, should be taken into account by systems providing any level of driving assistance, i.e. from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this PhD work, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow the established traffic codes to indicate future left/right turns and stop maneuvers with arm signals. In the case of pedestrians, no indications can be assumed a priori. Instead, we hypothesize that the walking pattern of a pedestrian can allow us to determine if he/she has the intention of crossing the road in the path of the egovehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this PhD work, we show how the same methodology can be used for recognizing pedestrians and cyclists’ intentions. For pedestrians, we perform experiments on the publicly available Daimler and JAAD datasets. For cyclists, we did not found an analogous dataset, therefore, we created our own one by acquiring
and annotating corresponding video-sequences which we aim to share with the
research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs.
 
  Address May 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;David Vazquez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-6-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Fan2019 Serial 3388  
Permanent link to this record
 

 
Author Ricardo Toledo edit  openurl
  Title (up) Cardiac workstation and dynamic model to assist in coronary tree analysis. Type Book Whole
  Year 2001 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Petia Radeva;JuanJose Villanueva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Tol2001 Serial 166  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: