|   | 
Details
   web
Records
Author Lorenzo Seidenari; Giuseppe Serra; Andrew Bagdanov; Alberto del Bimbo
Title (up) Local pyramidal descriptors for image recognition Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue 5 Pages 1033 - 1040
Keywords Object categorization; local features; kernel methods
Abstract In this paper we present a novel method to improve the flexibility of descriptor matching for image recognition by using local multiresolution
pyramids in feature space. We propose that image patches be represented at multiple levels of descriptor detail and that these levels be defined in terms of local spatial pooling resolution. Preserving multiple levels of detail in local descriptors is a way of hedging one’s bets on which levels will most relevant for matching during learning and recognition. We introduce the Pyramid SIFT (P-SIFT) descriptor and show that its use in four state-of-the-art image recognition pipelines improves accuracy and yields state-of-the-art results. Our technique is applicable independently of spatial pyramid matching and we show that spatial pyramids can be combined with local pyramids to obtain
further improvement.We achieve state-of-the-art results on Caltech-101
(80.1%) and Caltech-256 (52.6%) when compared to other approaches based on SIFT features over intensity images. Our technique is efficient and is extremely easy to integrate into image recognition pipelines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes LAMP; 600.079 Approved no
Call Number Admin @ si @ SSB2014 Serial 2524
Permanent link to this record
 

 
Author Adriana Romero; Petia Radeva; Carlo Gatta
Title (up) Meta-parameter free unsupervised sparse feature learning Type Journal Article
Year 2015 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 37 Issue 8 Pages 1716-1722
Keywords
Abstract We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on CIFAR-10, STL- 10 and UCMerced show that the method achieves the state-of-theart performance, providing discriminative features that generalize well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; 600.068; 600.079; 601.160 Approved no
Call Number Admin @ si @ RRG2014b Serial 2594
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Ernest Valveny; Salvatore Tabbone
Title (up) Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework Type Journal Article
Year 2009 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 31 Issue 9 Pages 1630–1644
Keywords
Abstract The combination of the output of classifiers has been one of the strategies used to improve classification rates in general purpose classification systems. Some of the most common approaches can be explained using the Bayes' formula. In this paper, we tackle the problem of the combination of classifiers using a non-Bayesian probabilistic framework. This approach permits us to derive two linear combination rules that minimize misclassification rates under some constraints on the distribution of classifiers. In order to show the validity of this approach we have compared it with other popular combination rules from a theoretical viewpoint using a synthetic data set, and experimentally using two standard databases: the MNIST handwritten digit database and the GREC symbol database. Results on the synthetic data set show the validity of the theoretical approach. Indeed, results on real data show that the proposed methods outperform other common combination schemes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ RVT2009 Serial 1220
Permanent link to this record
 

 
Author G. Lisanti; I. Masi; Andrew Bagdanov; Alberto del Bimbo
Title (up) Person Re-identification by Iterative Re-weighted Sparse Ranking Type Journal Article
Year 2015 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 37 Issue 8 Pages 1629 - 1642
Keywords
Abstract In this paper we introduce a method for person re-identification based on discriminative, sparse basis expansions of targets in terms of a labeled gallery of known individuals. We propose an iterative extension to sparse discriminative classifiers capable of ranking many candidate targets. The approach makes use of soft- and hard- re-weighting to redistribute energy among the most relevant contributing elements and to ensure that the best candidates are ranked at each iteration. Our approach also leverages a novel visual descriptor which we show to be discriminative while remaining robust to pose and illumination variations. An extensive comparative evaluation is given demonstrating that our approach achieves state-of-the-art performance on single- and multi-shot person re-identification scenarios on the VIPeR, i-LIDS, ETHZ, and CAVIAR4REID datasets. The combination of our descriptor and iterative sparse basis expansion improves state-of-the-art rank-1 performance by six percentage points on VIPeR and by 20 on CAVIAR4REID compared to other methods with a single gallery image per person. With multiple gallery and probe images per person our approach improves by 17 percentage points the state-of-the-art on i-LIDS and by 72 on CAVIAR4REID at rank-1. The approach is also quite efficient, capable of single-shot person re-identification over galleries containing hundreds of individuals at about 30 re-identifications per second.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes LAMP; 601.240; 600.079 Approved no
Call Number Admin @ si @ LMB2015 Serial 2557
Permanent link to this record
 

 
Author Carlo Gatta; Francesco Ciompi
Title (up) Stacked Sequential Scale-Space Taylor Context Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue 8 Pages 1694-1700
Keywords
Abstract We analyze sequential image labeling methods that sample the posterior label field in order to gather contextual information. We propose an effective method that extracts local Taylor coefficients from the posterior at different scales. Results show that our proposal outperforms state-of-the-art methods on MSRC-21, CAMVID, eTRIMS8 and KAIST2 data sets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes LAMP; MILAB; 601.160; 600.079 Approved no
Call Number Admin @ si @ GaC2014 Serial 2466
Permanent link to this record
 

 
Author Ciprian Corneanu; Marc Oliu; Jeffrey F. Cohn; Sergio Escalera
Title (up) Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History Type Journal Article
Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 28 Issue 8 Pages 1548-1568
Keywords Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal
Abstract Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ COC2016 Serial 2718
Permanent link to this record
 

 
Author Josep Llados; Enric Marti; Juan J.Villanueva
Title (up) Symbol recognition by error-tolerant subgraph matching between region adjacency graphs Type Journal Article
Year 2001 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal
Volume 23 Issue 10 Pages 1137-1143
Keywords
Abstract The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG;IAM;ISE; Approved no
Call Number IAM @ iam @ LMV2001 Serial 1581
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz; Shangling Jui; Jian Yang
Title (up) Trust Your Good Friends: Source-Free Domain Adaptation by Reciprocal Neighborhood Clustering Type Journal Article
Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 45 Issue 12 Pages 15883-15895
Keywords
Abstract Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; MACO Approved no
Call Number Admin @ si @ YWW2023 Serial 3889
Permanent link to this record
 

 
Author Javier Selva; Anders S. Johansen; Sergio Escalera; Kamal Nasrollahi; Thomas B. Moeslund; Albert Clapes
Title (up) Video transformers: A survey Type Journal Article
Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 45 Issue 11 Pages 12922-12943
Keywords Artificial Intelligence; Computer Vision; Self-Attention; Transformers; Video Representations
Abstract Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However, they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced by the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey, we analyze the main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled at the input level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition, we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.
Address 1 Nov. 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ SJE2023 Serial 3823
Permanent link to this record
 

 
Author David Vazquez; Javier Marin; Antonio Lopez; Daniel Ponsa; David Geronimo
Title (up) Virtual and Real World Adaptation for Pedestrian Detection Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue 4 Pages 797-809
Keywords Domain Adaptation; Pedestrian Detection
Abstract Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in realworld images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.057; 600.054; 600.076 Approved no
Call Number ADAS @ adas @ VML2014 Serial 2275
Permanent link to this record
 

 
Author Zhengying Liu; Adrien Pavao; Zhen Xu; Sergio Escalera; Fabio Ferreira; Isabelle Guyon; Sirui Hong; Frank Hutter; Rongrong Ji; Julio C. S. Jacques Junior; Ge Li; Marius Lindauer; Zhipeng Luo; Meysam Madadi; Thomas Nierhoff; Kangning Niu; Chunguang Pan; Danny Stoll; Sebastien Treguer; Jin Wang; Peng Wang; Chenglin Wu; Youcheng Xiong; Arber Zela; Yang Zhang
Title (up) Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019 Type Journal Article
Year 2021 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 43 Issue 9 Pages 3108 - 3125
Keywords
Abstract This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a “meta-learner”, “data ingestor”, “model selector”, “model/learner”, and “evaluator”. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free “AutoDL self-service.”
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ LPX2021 Serial 3587
Permanent link to this record