toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title (up) Optical Music Recognition by Long Short-Term Memory Networks Type Book Chapter
  Year 2018 Publication Graphics Recognition. Current Trends and Evolutions Abbreviated Journal  
  Volume 11009 Issue Pages 81-95  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long ShortTerm Memory  
  Abstract Optical Music Recognition refers to the task of transcribing the image of a music score into a machine-readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level. The experimental results are promising, showing the benefits of our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor A. Fornes, B. Lamiroy  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-02283-9 Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 601.302; 601.330; 600.121 Approved no  
  Call Number Admin @ si @ BRC2018 Serial 3227  
Permanent link to this record
 

 
Author Mark Philip Philipsen; Jacob Velling Dueholm; Anders Jorgensen; Sergio Escalera; Thomas B. Moeslund edit  doi
openurl 
  Title (up) Organ Segmentation in Poultry Viscera Using RGB-D Type Journal Article
  Year 2018 Publication Sensors Abbreviated Journal SENS  
  Volume 18 Issue 1 Pages 117  
  Keywords semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN  
  Abstract We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ PVJ2018 Serial 3072  
Permanent link to this record
 

 
Author Gabriela Ramirez; Esau Villatoro; Bogdan Ionescu; Hugo Jair Escalante; Sergio Escalera; Martha Larson; Henning Muller; Isabelle Guyon edit  openurl
  Title (up) Overview of the Multimedia Information Processing for Personality & Social Networks Analysis Contes Type Conference Article
  Year 2018 Publication Multimedia Information Processing for Personality and Social Networks Analysis (MIPPSNA 2018) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Beijing; China; August 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ RVI2018 Serial 3211  
Permanent link to this record
 

 
Author Antonio Lopez edit  doi
openurl 
  Title (up) Pedestrian Detection Systems Type Book Chapter
  Year 2018 Publication Wiley Encyclopedia of Electrical and Electronics Engineering Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pedestrian detection is a highly relevant topic for both advanced driver assistance systems (ADAS) and autonomous driving. In this entry, we review the ideas behind pedestrian detection systems from the point of view of perception based on computer vision and machine learning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Lop2018 Serial 3230  
Permanent link to this record
 

 
Author Jorge Bernal; Aymeric Histace; Marc Masana; Quentin Angermann; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; Maroua Hammami; Ana Garcia Rodriguez; Henry Cordova; Olivier Romain; Gloria Fernandez Esparrach; Xavier Dray; F. Javier Sanchez edit  openurl
  Title (up) Polyp Detection Benchmark in Colonoscopy Videos using GTCreator: A Novel Fully Configurable Tool for Easy and Fast Annotation of Image Databases Type Conference Article
  Year 2018 Publication 32nd International Congress and Exhibition on Computer Assisted Radiology & Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes ISE; MV; 600.119 Approved no  
  Call Number Admin @ si @ BHM2018 Serial 3089  
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Cristian Tebe; Carles Sanchez edit   pdf
doi  openurl
  Title (up) Positive Airway Pressure to Enhance Computed Tomography Imaging for Airway Segmentation for Virtual Bronchoscopic Navigation Type Journal Article
  Year 2018 Publication Respiration Abbreviated Journal RES  
  Volume 96 Issue 6 Pages 525-534  
  Keywords Multidetector computed tomography; Bronchoscopy; Continuous positive airway pressure; Image enhancement; Virtual bronchoscopic navigation  
  Abstract Abstract
RATIONALE:
Virtual bronchoscopic navigation (VBN) guidance to peripheral pulmonary lesions is often limited by insufficient segmentation of the peripheral airways.

OBJECTIVES:
To test the effect of applying positive airway pressure (PAP) during CT acquisition to improve segmentation, particularly at end-expiration.

METHODS:
CT acquisitions in inspiration and expiration with 4 PAP protocols were recorded prospectively and compared to baseline inspiratory acquisitions in 20 patients. The 4 protocols explored differences between devices (flow vs. turbine), exposures (within seconds vs. 15-min) and pressure levels (10 vs. 14 cmH2O). Segmentation quality was evaluated with the number of airways and number of endpoints reached. A generalized mixed-effects model explored the estimated effect of each protocol.

MEASUREMENTS AND MAIN RESULTS:
Patient characteristics and lung function did not significantly differ between protocols. Compared to baseline inspiratory acquisitions, expiratory acquisitions after 15 min of 14 cmH2O PAP segmented 1.63-fold more airways (95% CI 1.07-2.48; p = 0.018) and reached 1.34-fold more endpoints (95% CI 1.08-1.66; p = 0.004). Inspiratory acquisitions performed immediately under 10 cmH2O PAP reached 1.20-fold (95% CI 1.09-1.33; p < 0.001) more endpoints; after 15 min the increase was 1.14-fold (95% CI 1.05-1.24; p < 0.001).

CONCLUSIONS:
CT acquisitions with PAP segment more airways and reach more endpoints than baseline inspiratory acquisitions. The improvement is particularly evident at end-expiration after 15 min of 14 cmH2O PAP. Further studies must confirm that the improvement increases diagnostic yield when using VBN to evaluate peripheral pulmonary lesions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.145 Approved no  
  Call Number Admin @ si @ DGT2018 Serial 3135  
Permanent link to this record
 

 
Author F.Negin; Pau Rodriguez; M.Koperski; A.Kerboua; Jordi Gonzalez; J.Bourgeois; E.Chapoulie; P.Robert; F.Bremond edit  url
openurl 
  Title (up) PRAXIS: Towards automatic cognitive assessment using gesture recognition Type Journal Article
  Year 2018 Publication Expert Systems with Applications Abbreviated Journal ESWA  
  Volume 106 Issue Pages 21-35  
  Keywords  
  Abstract Praxis test is a gesture-based diagnostic test which has been accepted as diagnostically indicative of cortical pathologies such as Alzheimer’s disease. Despite being simple, this test is oftentimes skipped by the clinicians. In this paper, we propose a novel framework to investigate the potential of static and dynamic upper-body gestures based on the Praxis test and their potential in a medical framework to automatize the test procedures for computer-assisted cognitive assessment of older adults.

In order to carry out gesture recognition as well as correctness assessment of the performances we have recollected a novel challenging RGB-D gesture video dataset recorded by Kinect v2, which contains 29 specific gestures suggested by clinicians and recorded from both experts and patients performing the gesture set. Moreover, we propose a framework to learn the dynamics of upper-body gestures, considering the videos as sequences of short-term clips of gestures. Our approach first uses body part detection to extract image patches surrounding the hands and then, by means of a fine-tuned convolutional neural network (CNN) model, it learns deep hand features which are then linked to a long short-term memory to capture the temporal dependencies between video frames.
We report the results of four developed methods using different modalities. The experiments show effectiveness of our deep learning based approach in gesture recognition and performance assessment tasks. Satisfaction of clinicians from the assessment reports indicates the impact of framework corresponding to the diagnosis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ NRK2018 Serial 3669  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
url  openurl
  Title (up) Product graph-based higher order contextual similarities for inexact subgraph matching Type Journal Article
  Year 2018 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 76 Issue Pages 596-611  
  Keywords  
  Abstract Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.167; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DLB2018 Serial 3083  
Permanent link to this record
 

 
Author Jon Almazan; Bojana Gajic; Naila Murray; Diane Larlus edit  doi
openurl 
  Title (up) Re-ID done right: towards good practices for person re-identification Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.  
  Address January 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Serial 3711  
Permanent link to this record
 

 
Author Cristina Palmero; Javier Selva; Mohammad Ali Bagheri; Sergio Escalera edit   pdf
openurl 
  Title (up) Recurrent CNN for 3D Gaze Estimation using Appearance and Shape Cues Type Conference Article
  Year 2018 Publication 29th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Gaze behavior is an important non-verbal cue in social signal processing and humancomputer interaction. In this paper, we tackle the problem of person- and head poseindependent 3D gaze estimation from remote cameras, using a multi-modal recurrent convolutional neural network (CNN). We propose to combine face, eyes region, and face landmarks as individual streams in a CNN to estimate gaze in still images. Then, we exploit the dynamic nature of gaze by feeding the learned features of all the frames in a sequence to a many-to-one recurrent module that predicts the 3D gaze vector of the last frame. Our multi-modal static solution is evaluated on a wide range of head poses and gaze directions, achieving a significant improvement of 14.6% over the state of the art on
EYEDIAP dataset, further improved by 4% when the temporal modality is included.
 
  Address Newcastle; UK; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ PSB2018 Serial 3208  
Permanent link to this record
 

 
Author Mohamed Ilyes Lakhal; Hakan Çevikalp; Sergio Escalera; Ferda Ofli edit  doi
openurl 
  Title (up) Recurrent Neural Networks for Remote Sensing Image Classification Type Journal Article
  Year 2018 Publication IET Computer Vision Abbreviated Journal IETCV  
  Volume 12 Issue 7 Pages 1040 - 1045  
  Keywords  
  Abstract Automatically classifying an image has been a central problem in computer vision for decades. A plethora of models has been proposed, from handcrafted feature solutions to more sophisticated approaches such as deep learning. The authors address the problem of remote sensing image classification, which is an important problem to many real world applications. They introduce a novel deep recurrent architecture that incorporates high-level feature descriptors to tackle this challenging problem. Their solution is based on the general encoder–decoder framework. To the best of the authors’ knowledge, this is the first study to use a recurrent network structure on this task. The experimental results show that the proposed framework outperforms the previous works in the three datasets widely used in the literature. They have achieved a state-of-the-art accuracy rate of 97.29% on the UC Merced dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LÇE2018 Serial 3119  
Permanent link to this record
 

 
Author Mohamed Ilyes Lakhal; Albert Clapes; Sergio Escalera; Oswald Lanz; Andrea Cavallaro edit   pdf
url  openurl
  Title (up) Residual Stacked RNNs for Action Recognition Type Conference Article
  Year 2018 Publication 9th International Workshop on Human Behavior Understanding Abbreviated Journal  
  Volume Issue Pages 534-548  
  Keywords Action recognition; Deep residual learning; Two-stream RNN  
  Abstract Action recognition pipelines that use Recurrent Neural Networks (RNN) are currently 5–10% less accurate than Convolutional Neural Networks (CNN). While most works that use RNNs employ a 2D CNN on each frame to extract descriptors for action recognition, we extract spatiotemporal features from a 3D CNN and then learn the temporal relationship of these descriptors through a stacked residual recurrent neural network (Res-RNN). We introduce for the first time residual learning to counter the degradation problem in multi-layer RNNs, which have been successful for temporal aggregation in two-stream action recognition pipelines. Finally, we use a late fusion strategy to combine RGB and optical flow data of the two-stream Res-RNN. Experimental results show that the proposed pipeline achieves competitive results on UCF-101 and state of-the-art results for RNN-like architectures on the challenging HMDB-51 dataset.  
  Address Munich; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LCE2018b Serial 3206  
Permanent link to this record
 

 
Author Ana Maria Ares; Jorge Bernal; Maria Jesus Nozal; F. Javier Sanchez; Jose Bernal edit  url
doi  openurl
  Title (up) Results of the use of Kahoot! gamification tool in a course of Chemistry Type Conference Article
  Year 2018 Publication 4th International Conference on Higher Education Advances Abbreviated Journal  
  Volume Issue Pages 1215-1222  
  Keywords  
  Abstract The present study examines the use of Kahoot! as a gamification tool to explore mixed learning strategies. We analyze its use in two different groups of a theoretical subject of the third course of the Degree in Chemistry. An empirical-analytical methodology was used using Kahoot! in two different groups of students, with different frequencies. The academic results of these two group of students were compared between them and with those obtained in the previous course, in which Kahoot! was not employed, with the aim of measuring the evolution in the students´ knowledge. The results showed, in all cases, that the use of Kahoot! has led to a significant increase in the overall marks, and in the number of students who passed the subject. Moreover, some differences were also observed in students´ academic performance according to the group. Finally, it can be concluded that the use of a gamification tool (Kahoot!) in a university classroom had generally improved students´ learning and marks, and that this improvement is more prevalent in those students who have achieved a better Kahoot! performance.  
  Address Valencia; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HEAD  
  Notes MV; no proj Approved no  
  Call Number Admin @ si @ ABN2018 Serial 3246  
Permanent link to this record
 

 
Author Laura Lopez-Fuentes; Joost Van de Weijer; Manuel Gonzalez-Hidalgo; Harald Skinnemoen; Andrew Bagdanov edit   pdf
url  openurl
  Title (up) Review on computer vision techniques in emergency situations Type Journal Article
  Year 2018 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 77 Issue 13 Pages 17069–17107  
  Keywords Emergency management; Computer vision; Decision makers; Situational awareness; Critical situation  
  Abstract In emergency situations, actions that save lives and limit the impact of hazards are crucial. In order to act, situational awareness is needed to decide what to do. Geolocalized photos and video of the situations as they evolve can be crucial in better understanding them and making decisions faster. Cameras are almost everywhere these days, either in terms of smartphones, installed CCTV cameras, UAVs or others. However, this poses challenges in big data and information overflow. Moreover, most of the time there are no disasters at any given location, so humans aiming to detect sudden situations may not be as alert as needed at any point in time. Consequently, computer vision tools can be an excellent decision support. The number of emergencies where computer vision tools has been considered or used is very wide, and there is a great overlap across related emergency research. Researchers tend to focus on state-of-the-art systems that cover the same emergency as they are studying, obviating important research in other fields. In order to unveil this overlap, the survey is divided along four main axes: the types of emergencies that have been studied in computer vision, the objective that the algorithms can address, the type of hardware needed and the algorithms used. Therefore, this review provides a broad overview of the progress of computer vision covering all sorts of emergencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.120 Approved no  
  Call Number Admin @ si @ LWG2018 Serial 3041  
Permanent link to this record
 

 
Author Rain Eric Haamer; Eka Rusadze; Iiris Lusi; Tauseef Ahmed; Sergio Escalera; Gholamreza Anbarjafari edit  doi
isbn  openurl
  Title (up) Review on Emotion Recognition Databases Type Book Chapter
  Year 2018 Publication Human-Robot Interaction: Theory and Application Abbreviated Journal  
  Volume Issue Pages  
  Keywords emotion; computer vision; databases  
  Abstract Over the past few decades human-computer interaction has become more important in our daily lives and research has developed in many directions: memory research, depression detection, and behavioural deficiency detection, lie detection, (hidden) emotion recognition etc. Because of that, the number of generic emotion and face databases or those tailored to specific needs have grown immensely large. Thus, a comprehensive yet compact guide is needed to help researchers find the most suitable database and understand what types of databases already exist. In this paper, different elicitation methods are discussed and the databases are primarily organized into neat and informative tables based on the format.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-78923-316-2 Medium  
  Area Expedition Conference  
  Notes HUPBA; 602.133 Approved no  
  Call Number Admin @ si @ HRL2018 Serial 3212  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: