|   | 
Details
   web
Records
Author Mohamed Ramzy Ibrahim; Robert Benavente; Felipe Lumbreras; Daniel Ponsa
Title (up) 3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks Type Conference Article
Year 2022 Publication CVPR 2022 Workshop on IEEE Perception Beyond the Visible Spectrum workshop series (PBVS, 18th Edition) Abbreviated Journal
Volume Issue Pages
Keywords Training; Solid modeling; Three-dimensional displays; PSNR; Convolution; Superresolution; Pattern recognition
Abstract The rapid advancement of Deep Convolutional Neural Networks helped in solving many remote sensing problems, especially the problems of super-resolution. However, most state-of-the-art methods focus more on Single Image Super-Resolution neglecting Multi-Image Super-Resolution. In this work, a new proposed 3D Residual in Residual Dense Blocks model (3DRRDB) focuses on remote sensing Multi-Image Super-Resolution for two different single spectral bands. The proposed 3DRRDB model explores the idea of 3D convolution layers in deeply connected Dense Blocks and the effect of local and global residual connections with residual scaling in Multi-Image Super-Resolution. The model tested on the Proba-V challenge dataset shows a significant improvement above the current state-of-the-art models scoring a Corrected Peak Signal to Noise Ratio (cPSNR) of 48.79 dB and 50.83 dB for Near Infrared (NIR) and RED Bands respectively. Moreover, the proposed 3DRRDB model scores a Corrected Structural Similarity Index Measure (cSSIM) of 0.9865 and 0.9909 for NIR and RED bands respectively.
Address New Orleans, USA; 19 June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes MSIAU; 600.130 Approved no
Call Number Admin @ si @ IBL2022 Serial 3693
Permanent link to this record
 

 
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil
Title (up) A benchmark for the evaluation of computational methods for bronchoscopic navigation Type Journal Article
Year 2022 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCARS
Volume 17 Issue 1 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number Admin @ si @ BSC2022 Serial 3832
Permanent link to this record
 

 
Author Ali Furkan Biten
Title (up) A Bitter-Sweet Symphony on Vision and Language: Bias and World Knowledge Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Vision and Language are broadly regarded as cornerstones of intelligence. Even though language and vision have different aims – language having the purpose of communication, transmission of information and vision having the purpose of constructing mental representations around us to navigate and interact with objects – they cooperate and depend on one another in many tasks we perform effortlessly. This reliance is actively being studied in various Computer Vision tasks, e.g. image captioning, visual question answering, image-sentence retrieval, phrase grounding, just to name a few. All of these tasks share the inherent difficulty of the aligning the two modalities, while being robust to language
priors and various biases existing in the datasets. One of the ultimate goal for vision and language research is to be able to inject world knowledge while getting rid of the biases that come with the datasets. In this thesis, we mainly focus on two vision and language tasks, namely Image Captioning and Scene-Text Visual Question Answering (STVQA).
In both domains, we start by defining a new task that requires the utilization of world knowledge and in both tasks, we find that the models commonly employed are prone to biases that exist in the data. Concretely, we introduce new tasks and discover several problems that impede performance at each level and provide remedies or possible solutions in each chapter: i) We define a new task to move beyond Image Captioning to Image Interpretation that can utilize Named Entities in the form of world knowledge. ii) We study the object hallucination problem in classic Image Captioning systems and develop an architecture-agnostic solution. iii) We define a sub-task of Visual Question Answering that requires reading the text in the image (STVQA), where we highlight the limitations of current models. iv) We propose an architecture for the STVQA task that can point to the answer in the image and show how to combine it with classic VQA models. v) We show how far language can get us in STVQA and discover yet another bias which causes the models to disregard the image while doing Visual Question Answering.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-5-5 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Bit2022 Serial 3755
Permanent link to this record
 

 
Author Diego Velazquez; Pau Rodriguez; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez
Title (up) A Closer Look at Embedding Propagation for Manifold Smoothing Type Journal Article
Year 2022 Publication Journal of Machine Learning Research Abbreviated Journal JMLR
Volume 23 Issue 252 Pages 1-27
Keywords Regularization; emi-supervised learning; self-supervised learning; adversarial robustness; few-shot classification
Abstract Supervised training of neural networks requires a large amount of manually annotated data and the resulting networks tend to be sensitive to out-of-distribution (OOD) data.
Self- and semi-supervised training schemes reduce the amount of annotated data required during the training process. However, OOD generalization remains a major challenge for most methods. Strategies that promote smoother decision boundaries play an important role in out-of-distribution generalization. For example, embedding propagation (EP) for manifold smoothing has recently shown to considerably improve the OOD performance for few-shot classification. EP achieves smoother class manifolds by building a graph from sample embeddings and propagating information through the nodes in an unsupervised manner. In this work, we extend the original EP paper providing additional evidence and experiments showing that it attains smoother class embedding manifolds and improves results in settings beyond few-shot classification. Concretely, we show that EP improves the robustness of neural networks against multiple adversarial attacks as well as semi- and
self-supervised learning performance.
Address 9/2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ VRG2022 Serial 3762
Permanent link to this record
 

 
Author Giuseppe De Gregorio; Sanket Biswas; Mohamed Ali Souibgui; Asma Bensalah; Josep Llados; Alicia Fornes; Angelo Marcelli
Title (up) A Few Shot Multi-representation Approach for N-Gram Spotting in Historical Manuscripts Type Conference Article
Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal
Volume 13639 Issue Pages 3-12
Keywords N-gram spotting; Few-shot learning; Multimodal understanding; Historical handwritten collections
Abstract Despite recent advances in automatic text recognition, the performance remains moderate when it comes to historical manuscripts. This is mainly because of the scarcity of available labelled data to train the data-hungry Handwritten Text Recognition (HTR) models. The Keyword Spotting System (KWS) provides a valid alternative to HTR due to the reduction in error rate, but it is usually limited to a closed reference vocabulary. In this paper, we propose a few-shot learning paradigm for spotting sequences of a few characters (N-gram) that requires a small amount of labelled training data. We exhibit that recognition of important n-grams could reduce the system’s dependency on vocabulary. In this case, an out-of-vocabulary (OOV) word in an input handwritten line image could be a sequence of n-grams that belong to the lexicon. An extensive experimental evaluation of our proposed multi-representation approach was carried out on a subset of Bentham’s historical manuscript collections to obtain some really promising results in this direction.
Address December 04 – 07, 2022; Hyderabad, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICFHR
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ GBS2022 Serial 3733
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil
Title (up) A Flexible Outlier Detector Based on a Topology Given by Graph Communities Type Journal Article
Year 2022 Publication Big Data Research Abbreviated Journal BDR
Volume 29 Issue Pages 100332
Keywords Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors
Abstract Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings.
Address August 28, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 Approved no
Call Number Admin @ si @ RBG2022a Serial 3718
Permanent link to this record
 

 
Author Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados
Title (up) A Generic Image Retrieval Method for Date Estimation of Historical Document Collections Type Conference Article
Year 2022 Publication Document Analysis Systems.15th IAPR International Workshop, (DAS2022) Abbreviated Journal
Volume 13237 Issue Pages 583–597
Keywords Date estimation; Document retrieval; Image retrieval; Ranking loss; Smooth-nDCG
Abstract Date estimation of historical document images is a challenging problem, with several contributions in the literature that lack of the ability to generalize from one dataset to others. This paper presents a robust date estimation system based in a retrieval approach that generalizes well in front of heterogeneous collections. We use a ranking loss function named smooth-nDCG to train a Convolutional Neural Network that learns an ordination of documents for each problem. One of the main usages of the presented approach is as a tool for historical contextual retrieval. It means that scholars could perform comparative analysis of historical images from big datasets in terms of the period where they were produced. We provide experimental evaluation on different types of documents from real datasets of manuscript and newspaper images.
Address La Rochelle, France; May 22–25, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference DAS
Notes DAG; 600.140; 600.121 Approved no
Call Number Admin @ si @ MGR2022 Serial 3694
Permanent link to this record
 

 
Author Josep Brugues Pujolras; Lluis Gomez; Dimosthenis Karatzas
Title (up) A Multilingual Approach to Scene Text Visual Question Answering Type Conference Article
Year 2022 Publication Document Analysis Systems.15th IAPR International Workshop, (DAS2022) Abbreviated Journal
Volume Issue Pages 65-79
Keywords Scene text; Visual question answering; Multilingual word embeddings; Vision and language; Deep learning
Abstract Scene Text Visual Question Answering (ST-VQA) has recently emerged as a hot research topic in Computer Vision. Current ST-VQA models have a big potential for many types of applications but lack the ability to perform well on more than one language at a time due to the lack of multilingual data, as well as the use of monolingual word embeddings for training. In this work, we explore the possibility to obtain bilingual and multilingual VQA models. In that regard, we use an already established VQA model that uses monolingual word embeddings as part of its pipeline and substitute them by FastText and BPEmb multilingual word embeddings that have been aligned to English. Our experiments demonstrate that it is possible to obtain bilingual and multilingual VQA models with a minimal loss in performance in languages not used during training, as well as a multilingual model trained in multiple languages that match the performance of the respective monolingual baselines.
Address La Rochelle, France; May 22–25, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference DAS
Notes DAG; 611.004; 600.155; 601.002 Approved no
Call Number Admin @ si @ BGK2022b Serial 3695
Permanent link to this record
 

 
Author David Berga; Xavier Otazu
Title (up) A neurodynamic model of saliency prediction in v1 Type Journal Article
Year 2022 Publication Neural Computation Abbreviated Journal NEURALCOMPUT
Volume 34 Issue 2 Pages 378-414
Keywords
Abstract Lateral connections in the primary visual cortex (V1) have long been hypothesized to be responsible for several visual processing mechanisms such as brightness induction, chromatic induction, visual discomfort, and bottom-up visual attention (also named saliency). Many computational models have been developed to independently predict these and other visual processes, but no computational model has been able to reproduce all of them simultaneously. In this work, we show that a biologically plausible computational model of lateral interactions of V1 is able to simultaneously predict saliency and all the aforementioned visual processes. Our model's architecture (NSWAM) is based on Penacchio's neurodynamic model of lateral connections of V1. It is defined as a network of firing rate neurons, sensitive to visual features such as brightness, color, orientation, and scale. We tested NSWAM saliency predictions using images from several eye tracking data sets. We show that the accuracy of predictions obtained by our architecture, using shuffled metrics, is similar to other state-of-the-art computational methods, particularly with synthetic images (CAT2000-Pattern and SID4VAM) that mainly contain low-level features. Moreover, we outperform other biologically inspired saliency models that are specifically designed to exclusively reproduce saliency. We show that our biologically plausible model of lateral connections can simultaneously explain different visual processes present in V1 (without applying any type of training or optimization and keeping the same parameterization for all the visual processes). This can be useful for the definition of a unified architecture of the primary visual cortex.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes NEUROBIT; 600.128; 600.120 Approved no
Call Number Admin @ si @ BeO2022 Serial 3696
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera
Title (up) A Non-Anatomical Graph Structure for isolated hand gesture separation in continuous gesture sequences Type Miscellaneous
Year 2022 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Continuous Hand Gesture Recognition (CHGR) has been extensively studied by researchers in the last few decades. Recently, one model has been presented to deal with the challenge of the boundary detection of isolated gestures in a continuous gesture video [17]. To enhance the model performance and also replace the handcrafted feature extractor in the presented model in [17], we propose a GCN model and combine it with the stacked Bi-LSTM and Attention modules to push the temporal information in the video stream. Considering the breakthroughs of GCN models for skeleton modality, we propose a two-layer GCN model to empower the 3D hand skeleton features. Finally, the class probabilities of each isolated gesture are fed to the post-processing module, borrowed from [17]. Furthermore, we replace the anatomical graph structure with some non-anatomical graph structures. Due to the lack of a large dataset, including both the continuous gesture sequences and the corresponding isolated gestures, three public datasets in Dynamic Hand Gesture Recognition (DHGR), RKS-PERSIANSIGN, and ASLVID, are used for evaluation. Experimental results show the superiority of the proposed model in dealing with isolated gesture boundaries detection in continuous gesture sequences
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ RKE2022d Serial 3828
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title (up) A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super-Resolution Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal SENS
Volume 22 Issue 6 Pages 2254
Keywords Thermal image super-resolution; unsupervised super-resolution; thermal images; attention module; semiregistered thermal images
Abstract This paper presents a transfer domain strategy to tackle the limitations of low-resolution thermal sensors and generate higher-resolution images of reasonable quality. The proposed technique employs a CycleGAN architecture and uses a ResNet as an encoder in the generator along with an attention module and a novel loss function. The network is trained on a multi-resolution thermal image dataset acquired with three different thermal sensors. Results report better performance benchmarking results on the 2nd CVPR-PBVS-2021 thermal image super-resolution challenge than state-of-the-art methods. The code of this work is available online.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; Approved no
Call Number Admin @ si @ RSV2022b Serial 3688
Permanent link to this record
 

 
Author Fei Yang; Yaxing Wang; Luis Herranz; Yongmei Cheng; Mikhail Mozerov
Title (up) A Novel Framework for Image-to-image Translation and Image Compression Type Journal Article
Year 2022 Publication Neurocomputing Abbreviated Journal NEUCOM
Volume 508 Issue Pages 58-70
Keywords
Abstract Data-driven paradigms using machine learning are becoming ubiquitous in image processing and communications. In particular, image-to-image (I2I) translation is a generic and widely used approach to image processing problems, such as image synthesis, style transfer, and image restoration. At the same time, neural image compression has emerged as a data-driven alternative to traditional coding approaches in visual communications. In this paper, we study the combination of these two paradigms into a joint I2I compression and translation framework, focusing on multi-domain image synthesis. We first propose distributed I2I translation by integrating quantization and entropy coding into an I2I translation framework (i.e. I2Icodec). In practice, the image compression functionality (i.e. autoencoding) is also desirable, requiring to deploy alongside I2Icodec a regular image codec. Thus, we further propose a unified framework that allows both translation and autoencoding capabilities in a single codec. Adaptive residual blocks conditioned on the translation/compression mode provide flexible adaptation to the desired functionality. The experiments show promising results in both I2I translation and image compression using a single model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ YWH2022 Serial 3679
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; I.Garcia Olive; M.Salcedo; J.Deportos; Carles Sanchez; Guillermo Torres; G.Moragas; Antoni Rosell
Title (up) A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients Type Journal Article
Year 2022 Publication EJNMMI Physics Abbreviated Journal EJNMMI-PHYS
Volume 9 Issue 1, Article 84 Pages 1-17
Keywords
Abstract Background: COVID-19 infection, especially in cases with pneumonia, is associated with a high rate of pulmonary embolism (PE). In patients with contraindications for CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic alternative. The goal of this study is to develop a radiomic diagnostic system to detect PE based only on the analysis of Q-SPECT/CT scans.
Methods: This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT volumes that includes both CT and Q-SPECT values for each volume point. We present a combined approach that uses radiomic features extracted from each scan as input into a fully connected classifcation neural network that optimizes a weighted crossentropy loss trained to discriminate between three diferent types of image patterns (pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of models using diferent confguration of parameters were tested.
Results: The proposed radiomic diagnostic system was trained on 20 patients (4,927 sets of samples of three types of image patterns) and validated in a group of 39 patients (4,410 sets of samples of three types of image patterns). In the training group, COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In the test group, the best model for determining diferent types of image patterns with PE presented a sensitivity, specifcity, positive predictive value and negative predictive value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting
pneumonia presented a sensitivity, specifcity, positive predictive value and negative predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at the pixel sample level are aggregated into regions of interest, the sensitivity of the PE increases to 85%, and all metrics improve for pneumonia.
Conclusion: This radiomic diagnostic system was able to identify the diferent lung imaging patterns and is a frst step toward a comprehensive intelligent radiomic system to optimize the diagnosis of PE by Q-SPECT/CT.
Address 5 dec 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number Admin @ si @ BGG2022 Serial 3759
Permanent link to this record
 

 
Author Daniela Rato; Miguel Oliveira; Vitor Santos; Manuel Gomes; Angel Sappa
Title (up) A sensor-to-pattern calibration framework for multi-modal industrial collaborative cells Type Journal Article
Year 2022 Publication Journal of Manufacturing Systems Abbreviated Journal JMANUFSYST
Volume 64 Issue Pages 497-507
Keywords Calibration; Collaborative cell; Multi-modal; Multi-sensor
Abstract Collaborative robotic industrial cells are workspaces where robots collaborate with human operators. In this context, safety is paramount, and for that a complete perception of the space where the collaborative robot is inserted is necessary. To ensure this, collaborative cells are equipped with a large set of sensors of multiple modalities, covering the entire work volume. However, the fusion of information from all these sensors requires an accurate extrinsic calibration. The calibration of such complex systems is challenging, due to the number of sensors and modalities, and also due to the small overlapping fields of view between the sensors, which are positioned to capture different viewpoints of the cell. This paper proposes a sensor to pattern methodology that can calibrate a complex system such as a collaborative cell in a single optimization procedure. Our methodology can tackle RGB and Depth cameras, as well as LiDARs. Results show that our methodology is able to accurately calibrate a collaborative cell containing three RGB cameras, a depth camera and three 3D LiDARs.
Address
Corporate Author Thesis
Publisher Science Direct Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; MACO Approved no
Call Number Admin @ si @ ROS2022 Serial 3750
Permanent link to this record
 

 
Author Miquel Angel Piera; Jose Luis Muñoz; Debora Gil; Gonzalo Martin; Jordi Manzano
Title (up) A Socio-Technical Simulation Model for the Design of the Future Single Pilot Cockpit: An Opportunity to Improve Pilot Performance Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal ACCESS
Volume 10 Issue Pages 22330-22343
Keywords Human factors ; Performance evaluation ; Simulation; Sociotechnical systems ; System performance
Abstract The future deployment of single pilot operations must be supported by new cockpit computer services. Such services require an adaptive context-aware integration of technical functionalities with the concurrent tasks that a pilot must deal with. Advanced artificial intelligence supporting services and improved communication capabilities are the key enabling technologies that will render future cockpits more integrated with the present digitalized air traffic management system. However, an issue in the integration of such technologies is the lack of socio-technical analysis in the design of these teaming mechanisms. A key factor in determining how and when a service support should be provided is the dynamic evolution of pilot workload. This paper investigates how the socio-technical model-based systems engineering approach paves the way for the design of a digital assistant framework by formalizing this workload. The model was validated in an Airbus A-320 cockpit simulator, and the results confirmed the degraded pilot behavioral model and the performance impact according to different contextual flight deck information. This study contributes to practical knowledge for designing human-machine task-sharing systems.
Address Feb 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number Admin @ si @ PMG2022 Serial 3697
Permanent link to this record