|   | 
Details
   web
Records
Author Hugo Bertiche; Meysam Madadi; Emilio Tylson; Sergio Escalera
Title (up) DeePSD: Automatic Deep Skinning And Pose Space Deformation For 3D Garment Animation Type Conference Article
Year 2021 Publication 19th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 5471-5480
Keywords
Abstract We present a novel solution to the garment animation problem through deep learning. Our contribution allows animating any template outfit with arbitrary topology and geometric complexity. Recent works develop models for garment edition, resizing and animation at the same time by leveraging the support body model (encoding garments as body homotopies). This leads to complex engineering solutions that suffer from scalability, applicability and compatibility. By limiting our scope to garment animation only, we are able to propose a simple model that can animate any outfit, independently of its topology, vertex order or connectivity. Our proposed architecture maps outfits to animated 3D models into the standard format for 3D animation (blend weights and blend shapes matrices), automatically providing of compatibility with any graphics engine. We also propose a methodology to complement supervised learning with an unsupervised physically based learning that implicitly solves collisions and enhances cloth quality.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ BMT2021 Serial 3606
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Joost Van de Weijer; Luis Herranz; Shangling Jui
Title (up) Generalized Source-free Domain Adaptation Type Conference Article
Year 2021 Publication 19th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 8958-8967
Keywords
Abstract Domain adaptation (DA) aims to transfer the knowledge learned from a source domain to an unlabeled target domain. Some recent works tackle source-free domain adaptation (SFDA) where only a source pre-trained model is available for adaptation to the target domain. However, those methods do not consider keeping source performance which is of high practical value in real world applications. In this paper, we propose a new domain adaptation paradigm called Generalized Source-free Domain Adaptation (G-SFDA), where the learned model needs to perform well on both the target and source domains, with only access to current unlabeled target data during adaptation. First, we propose local structure clustering (LSC), aiming to cluster the target features with its semantically similar neighbors, which successfully adapts the model to the target domain in the absence of source data. Second, we propose sparse domain attention (SDA), it produces a binary domain specific attention to activate different feature channels for different domains, meanwhile the domain attention will be utilized to regularize the gradient during adaptation to keep source information. In the experiments, for target performance our method is on par with or better than existing DA and SFDA methods, specifically it achieves state-of-the-art performance (85.4%) on VisDA, and our method works well for all domains after adapting to single or multiple target domains.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.120; 600.147 Approved no
Call Number Admin @ si @ YWW2021 Serial 3605
Permanent link to this record
 

 
Author Yaxing Wang; Hector Laria Mantecon; Joost Van de Weijer; Laura Lopez-Fuentes; Bogdan Raducanu
Title (up) TransferI2I: Transfer Learning for Image-to-Image Translation from Small Datasets Type Conference Article
Year 2021 Publication 19th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 13990-13999
Keywords
Abstract Image-to-image (I2I) translation has matured in recent years and is able to generate high-quality realistic images. However, despite current success, it still faces important challenges when applied to small domains. Existing methods use transfer learning for I2I translation, but they still require the learning of millions of parameters from scratch. This drawback severely limits its application on small domains. In this paper, we propose a new transfer learning for I2I translation (TransferI2I). We decouple our learning process into the image generation step and the I2I translation step. In the first step we propose two novel techniques: source-target initialization and self-initialization of the adaptor layer. The former finetunes the pretrained generative model (e.g., StyleGAN) on source and target data. The latter allows to initialize all non-pretrained network parameters without the need of any data. These techniques provide a better initialization for the I2I translation step. In addition, we introduce an auxiliary GAN that further facilitates the training of deep I2I systems even from small datasets. In extensive experiments on three datasets, (Animal faces, Birds, and Foods), we show that we outperform existing methods and that mFID improves on several datasets with over 25 points.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes LAMP; 600.147; 602.200; 600.120 Approved no
Call Number Admin @ si @ WLW2021 Serial 3604
Permanent link to this record