toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shiqi Yang; Yaxing Wang; Kai Wang; Shangling Jui; Joost Van de Weijer edit  openurl
  Title One Ring to Bring Them All: Towards Open-Set Recognition under Domain Shift Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper, we investigate model adaptation under domain and category shift, where the final goal is to achieve
(SF-UNDA), which addresses the situation where there exist both domain and category shifts between source and target domains. Under the SF-UNDA setting, the model cannot access source data anymore during target adaptation, which aims to address data privacy concerns. We propose a novel training scheme to learn a (
+1)-way classifier to predict the
source classes and the unknown class, where samples of only known source categories are available for training. Furthermore, for target adaptation, we simply adopt a weighted entropy minimization to adapt the source pretrained model to the unlabeled target domain without source data. In experiments, we show:
After source training, the resulting source model can get excellent performance for
;
After target adaptation, our method surpasses current UNDA approaches which demand source data during adaptation. The versatility to several different tasks strongly proves the efficacy and generalization ability of our method.
When augmented with a closed-set domain adaptation approach during target adaptation, our source-free method further outperforms the current state-of-the-art UNDA method by 2.5%, 7.2% and 13% on Office-31, Office-Home and VisDA respectively.
 
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; no proj Approved no  
  Call Number Admin @ si @ YWW2022c Serial 3818  
Permanent link to this record
 

 
Author Saiping Zhang, Luis Herranz, Marta Mrak, Marc Gorriz Blanch, Shuai Wan, Fuzheng Yang edit   pdf
openurl 
  Title PeQuENet: Perceptual Quality Enhancement of Compressed Video with Adaptation-and Attention-based Network Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper we propose a generative adversarial network (GAN) framework to enhance the perceptual quality of compressed videos. Our framework includes attention and adaptation to different quantization parameters (QPs) in a single model. The attention module exploits global receptive fields that can capture and align long-range correlations between consecutive frames, which can be beneficial for enhancing perceptual quality of videos. The frame to be enhanced is fed into the deep network together with its neighboring frames, and in the first stage features at different depths are extracted. Then extracted features are fed into attention blocks to explore global temporal correlations, followed by a series of upsampling and convolution layers. Finally, the resulting features are processed by the QP-conditional adaptation module which leverages the corresponding QP information. In this way, a single model can be used to enhance adaptively to various QPs without requiring multiple models specific for every QP value, while having similar performance. Experimental results demonstrate the superior performance of the proposed PeQuENet compared with the state-of-the-art compressed video quality enhancement algorithms.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MACO; no proj Approved no  
  Call Number Admin @ si @ ZHM2022b Serial 3819  
Permanent link to this record
 

 
Author Ruben Ballester; Xavier Arnal Clemente; Carles Casacuberta; Meysam Madadi; Ciprian Corneanu edit   pdf
openurl 
  Title Towards explaining the generalization gap in neural networks using topological data analysis Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Understanding how neural networks generalize on unseen data is crucial for designing more robust and reliable models. In this paper, we study the generalization gap of neural networks using methods from topological data analysis. For this purpose, we compute homological persistence diagrams of weighted graphs constructed from neuron activation correlations after a training phase, aiming to capture patterns that are linked to the generalization capacity of the network. We compare the usefulness of different numerical summaries from persistence diagrams and show that a combination of some of them can accurately predict and partially explain the generalization gap without the need of a test set. Evaluation on two computer vision recognition tasks (CIFAR10 and SVHN) shows competitive generalization gap prediction when compared against state-of-the-art methods.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ BAC2022 Serial 3821  
Permanent link to this record
 

 
Author Arya Farkhondeh; Cristina Palmero; Simone Scardapane; Sergio Escalera edit   pdf
openurl 
  Title Towards Self-Supervised Gaze Estimation Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recent joint embedding-based self-supervised methods have surpassed standard supervised approaches on various image recognition tasks such as image classification. These self-supervised methods aim at maximizing agreement between features extracted from two differently transformed views of the same image, which results in learning an invariant representation with respect to appearance and geometric image transformations. However, the effectiveness of these approaches remains unclear in the context of gaze estimation, a structured regression task that requires equivariance under geometric transformations (e.g., rotations, horizontal flip). In this work, we propose SwAT, an equivariant version of the online clustering-based self-supervised approach SwAV, to learn more informative representations for gaze estimation. We demonstrate that SwAT, with ResNet-50 and supported with uncurated unlabeled face images, outperforms state-of-the-art gaze estimation methods and supervised baselines in various experiments. In particular, we achieve up to 57% and 25% improvements in cross-dataset and within-dataset evaluation tasks on existing benchmarks (ETH-XGaze, Gaze360, and MPIIFaceGaze).  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ FPS2022 Serial 3822  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit   pdf
openurl 
  Title Word separation in continuous sign language using isolated signs and post-processing Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Continuous Sign Language Recognition (CSLR) is a long challenging task in Computer Vision due to the difficulties in detecting the explicit boundaries between the words in a sign sentence. To deal with this challenge, we propose a two-stage model. In the first stage, the predictor model, which includes a combination of CNN, SVD, and LSTM, is trained with the isolated signs. In the second stage, we apply a post-processing algorithm to the Softmax outputs obtained from the first part of the model in order to separate the isolated signs in the continuous signs. Due to the lack of a large dataset, including both the sign sequences and the corresponding isolated signs, two public datasets in Isolated Sign Language Recognition (ISLR), RKS-PERSIANSIGN and ASLVID, are used for evaluation. Results of the continuous sign videos confirm the efficiency of the proposed model to deal with isolated sign boundaries detection.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ RKE2022b Serial 3824  
Permanent link to this record
 

 
Author Marco Cotogni; Fei Yang; Claudio Cusano; Andrew Bagdanov; Joost Van de Weijer edit   pdf
openurl 
  Title Gated Class-Attention with Cascaded Feature Drift Compensation for Exemplar-free Continual Learning of Vision Transformers Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords Marco Cotogni, Fei Yang, Claudio Cusano, Andrew D. Bagdanov, Joost van de Weijer  
  Abstract We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; no proj Approved no  
  Call Number Admin @ si @ CYC2022 Serial 3827  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit   pdf
openurl 
  Title A Non-Anatomical Graph Structure for isolated hand gesture separation in continuous gesture sequences Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Continuous Hand Gesture Recognition (CHGR) has been extensively studied by researchers in the last few decades. Recently, one model has been presented to deal with the challenge of the boundary detection of isolated gestures in a continuous gesture video [17]. To enhance the model performance and also replace the handcrafted feature extractor in the presented model in [17], we propose a GCN model and combine it with the stacked Bi-LSTM and Attention modules to push the temporal information in the video stream. Considering the breakthroughs of GCN models for skeleton modality, we propose a two-layer GCN model to empower the 3D hand skeleton features. Finally, the class probabilities of each isolated gesture are fed to the post-processing module, borrowed from [17]. Furthermore, we replace the anatomical graph structure with some non-anatomical graph structures. Due to the lack of a large dataset, including both the continuous gesture sequences and the corresponding isolated gestures, three public datasets in Dynamic Hand Gesture Recognition (DHGR), RKS-PERSIANSIGN, and ASLVID, are used for evaluation. Experimental results show the superiority of the proposed model in dealing with isolated gesture boundaries detection in continuous gesture sequences  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ RKE2022d Serial 3828  
Permanent link to this record
 

 
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil edit  openurl
  Title A benchmark for the evaluation of computational methods for bronchoscopic navigation Type Journal Article
  Year 2022 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCARS  
  Volume 17 Issue 1 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ BSC2022 Serial 3832  
Permanent link to this record
 

 
Author Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil edit  url
openurl 
  Title EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results Type Journal Article
  Year 2022 Publication Journal of Thoracic Oncology Abbreviated Journal JTO  
  Volume 17 Issue 9 Pages S182  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ RBG2022b Serial 3834  
Permanent link to this record
 

 
Author Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil edit  openurl
  Title Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results. Type Journal Article
  Year 2022 Publication European Respiratory Journal Abbreviated Journal ERJ  
  Volume 60 Issue 66 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ RBG2022c Serial 3835  
Permanent link to this record
 

 
Author Vacit Oguz Yazici edit  isbn
openurl 
  Title Towards Smart Fashion: Visual Recognition of Products and Attributes Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Artificial intelligence is innovating the fashion industry by proposing new applications and solutions to the problems encountered by researchers and engineers working in the industry. In this thesis, we address three of these problems. In the first part of the thesis, we tackle the problem of multi-label image classification which is very related to fashion attribute recognition. In the second part of the thesis, we address two problems that are specific to fashion. Firstly, we address the problem of main product detection which is the task of associating correct image parts (e.g. bounding boxes) with the fashion product being sold. Secondly, we address the problem of color naming for multicolored fashion items. The task of multi-label image classification consists in assigning various concepts such as objects or attributes to images. Usually, there are dependencies that can be learned between the concepts to capture label correlations (chair and table classes are more likely to co-exist than chair and giraffe).
If we treat the multi-label image classification problem as an orderless set prediction problem, we can exploit recurrent neural networks (RNN) to capture label correlations. However, RNNs are trained to predict ordered sequences of tokens, so if the order of the predicted sequence is different than the order of the ground truth sequence, there will be penalization although the predictions are correct. Therefore, in the first part of the thesis, we propose an orderless loss function which will order the labels in the ground truth sequence dynamically in a way that the minimum loss is achieved. This results in a significant improvement of RNN models on multi-label image classification over the previous methods.
However, RNNs suffer from long term dependencies when the cardinality of set grows bigger. The decoding process might stop early if the current hidden state cannot find any object and outputs the termination token. This would cause the remaining classes not to be predicted and lower recall metric. Transformers can be used to avoid the long term dependency problem exploiting their selfattention modules that process sequential data simultaneously. Consequently, we propose a novel transformer model for multi-label image classification which surpasses the state-of-the-art results by a large margin.
In the second part of thesis, we focus on two fashion-specific problems. Main product detection is the task of associating image parts with the fashion product that is being sold, generally using associated textual metadata (product title or description). Normally, in fashion e-commerces, products are represented by multiple images where a person wears the product along with other fashion items. If all the fashion items in the images are marked with bounding boxes, we can use the textual metadata to decide which item is the main product. The initial work treated each of these images independently, discarding the fact that they all belong to the same product. In this thesis, we represent the bounding boxes from all the images as nodes in a fully connected graph. This allows the algorithm to learn relations between the nodes during training and take the entire context into account for the final decision. Our algorithm results in a significant improvement of the state-ofthe-art.
Moreover, we address the problem of color naming for multicolored fashion items, which is a challenging task due to the external factors such as illumination changes or objects that act as clutter. In the context of multi-label classification, the vaguely defined lines between the classes in the color space cause ambiguity. For example, a shade of blue which is very close to green might cause the model to incorrectly predict the color blue and green at the same time. Based on this, models trained for color naming are expected to recognize the colors and their quantities in both single colored and multicolored fashion items. Therefore, in this thesis, we propose a novel architecture with an additional head that explicitly estimates the number of colors in fashion items. This removes the ambiguity problem and results in better color naming performance.
 
  Address January 2022  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Arnau Ramisa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-6-1 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Ogu2022 Serial 3631  
Permanent link to this record
 

 
Author Akhil Gurram edit  isbn
openurl 
  Title Monocular Depth Estimation for Autonomous Driving Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract 3D geometric information is essential for on-board perception in autonomous driving and driver assistance. Autonomous vehicles (AVs) are equipped with calibrated sensor suites. As part of these suites, we can find LiDARs, which are expensive active sensors in charge of providing the 3D geometric information. Depending on the operational conditions for the AV, calibrated stereo rigs may be also sufficient for obtaining 3D geometric information, being these rigs less expensive and easier to install than LiDARs. However, ensuring a proper maintenance and calibration of these types of sensors is not trivial. Accordingly, there is an increasing interest on performing monocular depth estimation (MDE) to obtain 3D geometric information on-board. MDE is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Moreover, a set of single cameras with MDE capabilities would still be a cheap solution for on-board perception, relatively easy to integrate and maintain in an AV.
Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Accordingly, the overall goal of this PhD is to study methods for improving CNN-based MDE accuracy under different training settings. More specifically, this PhD addresses different research questions that are described below. When we started to work in this PhD, state-of-theart methods for MDE were already based on CNNs. In fact, a promising line of work consisted in using image-based semantic supervision (i.e., pixel-level class labels) while training CNNs for MDE using LiDAR-based supervision (i.e., depth). It was common practice to assume that the same raw training data are complemented by both types of supervision, i.e., with depth and semantic labels. However, in practice, it was more common to find heterogeneous datasets with either only depth supervision or only semantic supervision. Therefore, our first work was to research if we could train CNNs for MDE by leveraging depth and semantic information from heterogeneous datasets. We show that this is indeed possible, and we surpassed the state-of-the-art results on MDE at the time we did this research. To achieve our results, we proposed a particular CNN architecture and a new training protocol.
After this research, it was clear that the upper-bound setting to train CNN-based MDE models consists in using LiDAR data as supervision. However, it would be cheaper and more scalable if we would be able to train such models from monocular sequences. Obviously, this is far more challenging, but worth to research. Training MDE models using monocular sequences is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. To alleviate these problems, we perform MDE by virtual-world supervision and real-world SfM self-supervision. We call our proposalMonoDEVSNet. We compensate the SfM self-supervision limitations by leveraging
virtual-world images with accurate semantic and depth supervision, as well as addressing the virtual-to-real domain gap. MonoDEVSNet outperformed previous MDE CNNs trained on monocular and even stereo sequences. We have publicly released MonoDEVSNet at <https://github.com/HMRC-AEL/MonoDEVSNet>.
Finally, since MDE is performed to produce 3D information for being used in downstream tasks related to on-board perception. We also address the question of whether the standard metrics for MDE assessment are a good indicator for future MDE-based driving-related perception tasks. By using 3D object detection on point clouds as proxy of on-board perception, we conclude that, indeed, MDE evaluation metrics give rise to a ranking of methods which reflects relatively well the 3D object detection results we may expect.
 
  Address March, 2022  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Antonio Lopez;Onay Urfalioglu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-0-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Gur2022 Serial 3712  
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani edit  isbn
openurl 
  Title Towards Efficient and Robust Convolutional Neural Networks for Single Image Super-Resolution Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Single image super-resolution (SISR) is an important task in image processing which aims to enhance the resolution of imaging systems. Recently, SISR has witnessed great strides with the rapid development of deep learning. Recent advances in SISR are mostly devoted to designing deeper and wider networks to enhance their representation learning capacity. However, as the depth of networks increases, deep learning-based methods are faced with the challenge of computational complexity in practice. Moreover, most existing methods rarely leverage the intermediate features and also do not discriminate the computation of features by their frequencial components, thereby achieving relatively low performance. Aside from the aforementioned problems, another desired ability is to upsample images to arbitrary scales using a single model. Most current SISR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements. In this thesis, we address the aforementioned issues and propose solutions to them: i) We present a novel frequency-based enhancement block which treats different frequencies in a heterogeneous way and also models inter-channel dependencies, which consequently enrich the output feature. Thus it helps the network generate more discriminative representations by explicitly recovering finer details. ii) We introduce OverNet which contains two main parts: a lightweight feature extractor that follows a novel recursive framework of skip and dense connections to reduce low-level feature degradation, and an overscaling module that generates an accurate SR image by internally constructing an overscaled intermediate representation of the output features. Then, to solve the problem of reconstruction at arbitrary scale factors, we introduce a novel multi-scale loss, that allows the simultaneous training of all scale factors using a single model. iii) We propose a directional variance attention network which leverages a novel attention mechanism to enhance features in different channels and spatial regions. Moreover, we introduce a novel procedure for using attention mechanisms together with residual blocks to facilitate the preservation of finer details. Finally, we demonstrate that our approaches achieve considerably better performance than previous state-of-the-art methods, in terms of both quantitative and visual quality.  
  Address April, 2022  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Place of Publication Editor Jordi Gonzalez;Xavier Roca;Pau Rodriguez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-1-7 Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Beh2022 Serial 3713  
Permanent link to this record
 

 
Author Kai Wang edit  isbn
openurl 
  Title Continual learning for hierarchical classification, few-shot recognition, and multi-modal learning Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep learning has drastically changed computer vision in the past decades and achieved great success in many applications, such as image classification, retrieval, detection, and segmentation thanks to the emergence of neural networks. Typically, for most applications, these networks are presented with examples from all tasks they are expected to perform. However, for many applications, this is not a realistic
scenario, and an algorithm is required to learn tasks sequentially. Continual learning proposes theory and methods for this scenario.
The main challenge for continual learning systems is called catastrophic forgetting and refers to a significant drop in performance on previous tasks. To tackle this problem, three main branches of methods have been explored to alleviate the forgetting in continual learning. They are regularization-based methods, rehearsalbased methods, and parameter isolation-based methods. However, most of them are focused on image classification tasks. Continual learning of many computer vision fields has still not been well-explored. Thus, in this thesis, we extend the continual learning knowledge to meta learning, we propose a method for the incremental learning of hierarchical relations for image classification, we explore image recognition in online continual learning, and study continual learning for cross-modal learning.
In this thesis, we explore the usage of image rehearsal when addressing the incremental meta learning problem. Observing that existingmethods fail to improve performance with saved exemplars, we propose to mix exemplars with current task data and episode-level distillation to overcome forgetting in incremental meta learning. Next, we study a more realistic image classification scenario where each class has multiple granularity levels. Only one label is present at any time, which requires the model to infer if the provided label has a hierarchical relation with any already known label. In experiments, we show that the estimated hierarchy information can be beneficial in both the training and inference stage.
For the online continual learning setting, we investigate the usage of intermediate feature replay. In this case, the training samples are only observed by the model only one time. Here we fix thememory buffer for feature replay and compare the effectiveness of saving features from different layers. Finally, we investigate multi-modal continual learning, where an image encoder is cooperating with a semantic branch. We consider the continual learning of both zero-shot learning and cross-modal retrieval problems.
 
  Address July, 2022  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Place of Publication Editor Luis Herranz;Joost Van de Weijer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-2-4 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Wan2022 Serial 3714  
Permanent link to this record
 

 
Author Aitor Alvarez-Gila edit  openurl
  Title Self-supervised learning for image-to-image translation in the small data regime Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords Computer vision; Neural networks; Self-supervised learning; Image-to-image mapping; Probabilistic programming  
  Abstract The mass irruption of Deep Convolutional Neural Networks (CNNs) in computer vision since 2012 led to a dominance of the image understanding paradigm consisting in an end-to-end fully supervised learning workflow over large-scale annotated datasets. This approach proved to be extremely useful at solving a myriad of classic and new computer vision tasks with unprecedented performance —often, surpassing that of humans—, at the expense of vast amounts of human-labeled data, extensive computational resources and the disposal of all of our prior knowledge on the task at hand. Even though simple transfer learning methods, such as fine-tuning, have achieved remarkable impact, their success when the amount of labeled data in the target domain is small is limited. Furthermore, the non-static nature of data generation sources will often derive in data distribution shifts that degrade the performance of deployed models. As a consequence, there is a growing demand for methods that can exploit elements of prior knowledge and sources of information other than the manually generated ground truth annotations of the images during the network training process, so that they can adapt to new domains that constitute, if not a small data regime, at least a small labeled data regime. This thesis targets such few or no labeled data scenario in three distinct image-to-image mapping learning problems. It contributes with various approaches that leverage our previous knowledge of different elements of the image formation process: We first present a data-efficient framework for both defocus and motion blur detection, based on a model able to produce realistic synthetic local degradations. The framework comprises a self-supervised, a weakly-supervised and a semi-supervised instantiation, depending on the absence or availability and the nature of human annotations, and outperforms fully-supervised counterparts in a variety of settings. Our knowledge on color image formation is then used to gather input and target ground truth image pairs for the RGB to hyperspectral image reconstruction task. We make use of a CNN to tackle this problem, which, for the first time, allows us to exploit spatial context and achieve state-of-the-art results given a limited hyperspectral image set. In our last contribution to the subfield of data-efficient image-to-image transformation problems, we present the novel semi-supervised task of zero-pair cross-view semantic segmentation: we consider the case of relocation of the camera in an end-to-end trained and deployed monocular, fixed-view semantic segmentation system often found in industry. Under the assumption that we are allowed to obtain an additional set of synchronized but unlabeled image pairs of new scenes from both original and new camera poses, we present ZPCVNet, a model and training procedure that enables the production of dense semantic predictions in either source or target views at inference time. The lack of existing suitable public datasets to develop this approach led us to the creation of MVMO, a large-scale Multi-View, Multi-Object path-traced dataset with per-view semantic segmentation annotations. We expect MVMO to propel future research in the exciting under-developed fields of cross-view and multi-view semantic segmentation. Last, in a piece of applied research of direct application in the context of process monitoring of an Electric Arc Furnace (EAF) in a steelmaking plant, we also consider the problem of simultaneously estimating the temperature and spectral emissivity of distant hot emissive samples. To that end, we design our own capturing device, which integrates three point spectrometers covering a wide range of the Ultra-Violet, visible, and Infra-Red spectra and is capable of registering the radiance signal incoming from an 8cm diameter spot located up to 20m away. We then define a physically accurate radiative transfer model that comprises the effects of atmospheric absorbance, of the optical system transfer function, and of the sample temperature and spectral emissivity themselves. We solve this inverse problem without the need for annotated data using a probabilistic programming-based Bayesian approach, which yields full posterior distribution estimates of the involved variables that are consistent with laboratory-grade measurements.  
  Address Julu, 2019  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Place of Publication Editor Joost Van de Weijer; Estibaliz Garrote  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Alv2022 Serial 3716  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: