|   | 
Details
   web
Records
Author F. Javier Sanchez; Jorge Bernal; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; Gloria Fernandez Esparrach
Title Bright spot regions segmentation and classification for specular highlights detection in colonoscopy videos Type Journal Article
Year 2017 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume Issue Pages 1-20
Keywords Specular highlights; bright spot regions segmentation; region classification; colonoscopy
Abstract A novel specular highlights detection method in colonoscopy videos is presented. The method is based on a model of appearance dening specular
highlights as bright spots which are highly contrasted with respect to adjacent regions. Our approach proposes two stages; segmentation, and then classication
of bright spot regions. The former denes a set of candidate regions obtained through a region growing process with local maxima as initial region seeds. This process creates a tree structure which keeps track, at each growing iteration, of the region frontier contrast; nal regions provided depend on restrictions over contrast value. Non-specular regions are ltered through a classication stage performed by a linear SVM classier using model-based features from each region. We introduce a new validation database with more than 25; 000 regions along with their corresponding pixel-wise annotations. We perform a comparative study against other approaches. Results show that our method is superior to other approaches, with our segmented regions being
closer to actual specular regions in the image. Finally, we also present how our methodology can also be used to obtain an accurate prediction of polyp histology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; 600.096; 600.175 Approved no
Call Number Admin @ si @ SBS2017 Serial 2975
Permanent link to this record
 

 
Author Patrick Brandao; O. Zisimopoulos; E. Mazomenos; G. Ciutib; Jorge Bernal; M. Visentini-Scarzanell; A. Menciassi; P. Dario; A. Koulaouzidis; A. Arezzo; D.J. Hawkes; D. Stoyanov
Title Towards a computed-aided diagnosis system in colonoscopy: Automatic polyp segmentation using convolution neural networks Type Journal
Year 2018 Publication Journal of Medical Robotics Research Abbreviated Journal JMRR
Volume 3 Issue 2 Pages
Keywords convolutional neural networks; colonoscopy; computer aided diagnosis
Abstract Early diagnosis is essential for the successful treatment of bowel cancers including colorectal cancer (CRC) and capsule endoscopic imaging with robotic actuation can be a valuable diagnostic tool when combined with automated image analysis. We present a deep learning rooted detection and segmentation framework for recognizing lesions in colonoscopy and capsule endoscopy images. We restructure established convolution architectures, such as VGG and ResNets, by converting them into fully-connected convolution networks (FCNs), ne-tune them and study their capabilities for polyp segmentation and detection. We additionally use Shape-from-Shading (SfS) to recover depth and provide a richer representation of the tissue's structure in colonoscopy images. Depth is
incorporated into our network models as an additional input channel to the RGB information and we demonstrate that the resulting network yields improved performance. Our networks are tested on publicly available datasets and the most accurate segmentation model achieved a mean segmentation IU of 47.78% and 56.95% on the ETIS-Larib and CVC-Colon datasets, respectively. For polyp
detection, the top performing models we propose surpass the current state of the art with detection recalls superior to 90% for all datasets tested. To our knowledge, we present the rst work to use FCNs for polyp segmentation in addition to proposing a novel combination of SfS and RGB that boosts performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; no menciona Approved no
Call Number BZM2018 Serial 2976
Permanent link to this record
 

 
Author Quentin Angermann; Jorge Bernal; Cristina Sanchez Montes; Gloria Fernandez Esparrach; Xavier Gray; Olivier Romain; F. Javier Sanchez; Aymeric Histace
Title Towards Real-Time Polyp Detection in Colonoscopy Videos: Adapting Still Frame-Based Methodologies for Video Sequences Analysis Type Conference Article
Year 2017 Publication 4th International Workshop on Computer Assisted and Robotic Endoscopy Abbreviated Journal
Volume Issue Pages 29-41
Keywords Polyp detection; colonoscopy; real time; spatio temporal coherence
Abstract Colorectal cancer is the second cause of cancer death in United States: precursor lesions (polyps) detection is key for patient survival. Though colonoscopy is the gold standard screening tool, some polyps are still missed. Several computational systems have been proposed but none of them are used in the clinical room mainly due to computational constraints. Besides, most of them are built over still frame databases, decreasing their performance on video analysis due to the lack of output stability and not coping with associated variability on image quality and polyp appearance. We propose a strategy to adapt these methods to video analysis by adding a spatio-temporal stability module and studying a combination of features to capture polyp appearance variability. We validate our strategy, incorporated on a real-time detection method, on a public video database. Resulting method detects all
polyps under real time constraints, increasing its performance due to our
adaptation strategy.
Address Quebec; Canada; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CARE
Notes MV; 600.096; 600.075 Approved no
Call Number Admin @ si @ ABS2017b Serial 2977
Permanent link to this record
 

 
Author Quentin Angermann; Jorge Bernal; Cristina Sanchez Montes; Maroua Hammami; Gloria Fernandez Esparrach; Xavier Dray; Olivier Romain; F. Javier Sanchez; Aymeric Histace
Title Clinical Usability Quantification Of a Real-Time Polyp Detection Method In Videocolonoscopy Type Conference Article
Year 2017 Publication 25th United European Gastroenterology Week Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Barcelona, October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ESGE
Notes MV; no menciona Approved no
Call Number Admin @ si @ ABS2017c Serial 2978
Permanent link to this record
 

 
Author Cristina Sanchez Montes; F. Javier Sanchez; Cristina Rodriguez de Miguel; Henry Cordova; Jorge Bernal; Maria Lopez Ceron; Josep Llach; Gloria Fernandez Esparrach
Title Histological Prediction Of Colonic Polyps By Computer Vision. Preliminary Results Type Conference Article
Year 2017 Publication 25th United European Gastroenterology Week Abbreviated Journal
Volume Issue Pages
Keywords polyps; histology; computer vision
Abstract during colonoscopy, clinicians perform visual inspection of the polyps to predict histology. Kudo’s pit pattern classification is one of the most commonly used for optical diagnosis. These surface patterns present a contrast with respect to their neighboring regions and they can be considered as bright regions in the image that can attract the attention of computational methods.
Address Barcelona; October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ESGE
Notes MV; no menciona Approved no
Call Number Admin @ si @ SSR2017 Serial 2979
Permanent link to this record
 

 
Author Pierdomenico Fiadino; Victor Ponce; Juan Antonio Torrero-Gonzalez; Marc Torrent-Moreno
Title Call Detail Records for Human Mobility Studies: Taking Stock of the Situation in the “Always Connected Era" Type Conference Article
Year 2017 Publication Workshop on Big Data Analytics and Machine Learning for Data Communication Networks Abbreviated Journal
Volume Issue Pages 43-48
Keywords mobile networks; call detail records; human mobility
Abstract The exploitation of cellular network data for studying human mobility has been a popular research topic in the last decade. Indeed, mobile terminals could be considered ubiquitous sensors that allow the observation of human movements on large scale without the need of relying on non-scalable techniques, such as surveys, or dedicated and expensive monitoring infrastructures. In particular, Call Detail Records (CDRs), collected by operators for billing purposes,
have been extensively employed due to their rather large availability, compared to other types of cellular data (e.g., signaling). Despite the interest aroused around this topic, the research community has generally agreed about the scarcity of information provided by CDRs: the position of mobile terminals is logged when some kind of activity (calls, SMS, data connections) occurs, which translates in a picture of mobility somehow biased by the activity degree of users.
By studying two datasets collected by a Nation-wide operator in 2014 and 2016, we show that the situation has drastically changed in terms of data volume and quality. The increase of flat data plans and the higher penetration of “
always connected” terminals have driven up the number of recorded CDRs, providing higher temporal accuracy for users’ locations.
Address UCLA; USA; August 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4503-5054-9 Medium
Area Expedition Conference ACMW (SIGCOMM)
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ FPT2017 Serial 2980
Permanent link to this record
 

 
Author Maryam Asadi-Aghbolaghi; Albert Clapes; Marco Bellantonio; Hugo Jair Escalante; Victor Ponce; Xavier Baro; Isabelle Guyon; Shohreh Kasaei; Sergio Escalera
Title Deep Learning for Action and Gesture Recognition in Image Sequences: A Survey Type Book Chapter
Year 2017 Publication Gesture Recognition Abbreviated Journal
Volume Issue Pages 539-578
Keywords Action recognition; Gesture recognition; Deep learning architectures; Fusion strategies
Abstract Interest in automatic action and gesture recognition has grown considerably in the last few years. This is due in part to the large number of application domains for this type of technology. As in many other computer vision areas, deep learning based methods have quickly become a reference methodology for obtaining state-of-the-art performance in both tasks. This chapter is a survey of current deep learning based methodologies for action and gesture recognition in sequences of images. The survey reviews both fundamental and cutting edge methodologies reported in the last few years. We introduce a taxonomy that summarizes important aspects of deep learning for approaching both tasks. Details of the proposed architectures, fusion strategies, main datasets, and competitions are reviewed. Also, we summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, their highlighting features, and opportunities and challenges for future research. To the best of our knowledge this is the first survey in the topic. We foresee this survey will become a reference in this ever dynamic field of research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ ACB2017a Serial 2981
Permanent link to this record
 

 
Author Maryam Asadi-Aghbolaghi; Albert Clapes; Marco Bellantonio; Hugo Jair Escalante; Victor Ponce; Xavier Baro; Isabelle Guyon; Shohreh Kasaei; Sergio Escalera
Title A survey on deep learning based approaches for action and gesture recognition in image sequences Type Conference Article
Year 2017 Publication 12th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The interest in action and gesture recognition has grown considerably in the last years. In this paper, we present a survey on current deep learning methodologies for action and gesture recognition in image sequences. We introduce a taxonomy that summarizes important aspects of deep learning
for approaching both tasks. We review the details of the proposed architectures, fusion strategies, main datasets, and competitions.
We summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, discussing their main features and identify opportunities and challenges for future research.
Address Washington; USA; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FG
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ ACB2017b Serial 2982
Permanent link to this record
 

 
Author Zhijie Fang; David Vazquez; Antonio Lopez
Title On-Board Detection of Pedestrian Intentions Type Journal Article
Year 2017 Publication Sensors Abbreviated Journal SENS
Volume 17 Issue 10 Pages 2193
Keywords pedestrian intention; ADAS; self-driving
Abstract Avoiding vehicle-to-pedestrian crashes is a critical requirement for nowadays advanced driver assistant systems (ADAS) and future self-driving vehicles. Accordingly, detecting pedestrians from raw sensor data has a history of more than 15 years of research, with vision playing a central role.
During the last years, deep learning has boosted the accuracy of image-based pedestrian detectors.
However, detection is just the first step towards answering the core question, namely is the vehicle going to crash with a pedestrian provided preventive actions are not taken? Therefore, knowing as soon as possible if a detected pedestrian has the intention of crossing the road ahead of the vehicle is
essential for performing safe and comfortable maneuvers that prevent a crash. However, compared to pedestrian detection, there is relatively little literature on detecting pedestrian intentions. This paper aims to contribute along this line by presenting a new vision-based approach which analyzes the
pose of a pedestrian along several frames to determine if he or she is going to enter the road or not. We present experiments showing 750 ms of anticipation for pedestrians crossing the road, which at a typical urban driving speed of 50 km/h can provide 15 additional meters (compared to a pure pedestrian detector) for vehicle automatic reactions or to warn the driver. Moreover, in contrast with state-of-the-art methods, our approach is monocular, neither requiring stereo nor optical flow information.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.076; 601.223; 600.116; 600.118 Approved no
Call Number Admin @ si @ FVL2017 Serial 2983
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell
Title Color representation in CNNs: parallelisms with biological vision Type Conference Article
Year 2017 Publication ICCV Workshop on Mutual Benefits ofr Cognitive and Computer Vision Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Convolutional Neural Networks (CNNs) trained for object recognition tasks present representational capabilities approaching to primate visual systems [1]. This provides a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical methodology used in physiology that is measuring index of selectivity of individual neurons to specific features. We use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neurons to provide a classification of the network population.
We conclude three main levels of color representation showing some parallelisms with biological visual systems: (a) a decomposition in a circular hue space to represent single color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional spaces in early stages to represent color edges (V1); and (c) a strong entanglement between color and shape patterns representing object-parts (e.g. wheel of a car), objectshapes (e.g. faces) or object-surrounds configurations (e.g. blue sky surrounding an object) in deeper layers (V4 or IT).
Address Venice; Italy; October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV-MBCC
Notes CIC; 600.087; 600.051 Approved no
Call Number Admin @ si @ RaV2017 Serial 2984
Permanent link to this record
 

 
Author Antonio Lopez; Gabriel Villalonga; Laura Sellart; German Ros; David Vazquez; Jiaolong Xu; Javier Marin; Azadeh S. Mozafari
Title Training my car to see using virtual worlds Type Journal Article
Year 2017 Publication Image and Vision Computing Abbreviated Journal IMAVIS
Volume 38 Issue Pages 102-118
Keywords
Abstract Computer vision technologies are at the core of different advanced driver assistance systems (ADAS) and will play a key role in oncoming autonomous vehicles too. One of the main challenges for such technologies is to perceive the driving environment, i.e. to detect and track relevant driving information in a reliable manner (e.g. pedestrians in the vehicle route, free space to drive through). Nowadays it is clear that machine learning techniques are essential for developing such a visual perception for driving. In particular, the standard working pipeline consists of collecting data (i.e. on-board images), manually annotating the data (e.g. drawing bounding boxes around pedestrians), learning a discriminative data representation taking advantage of such annotations (e.g. a deformable part-based model, a deep convolutional neural network), and then assessing the reliability of such representation with the acquired data. In the last two decades most of the research efforts focused on representation learning (first, designing descriptors and learning classifiers; later doing it end-to-end). Hence, collecting data and, especially, annotating it, is essential for learning good representations. While this has been the case from the very beginning, only after the disruptive appearance of deep convolutional neural networks that it became a serious issue due to their data hungry nature. In this context, the problem is that manual data annotation is a tiresome work prone to errors. Accordingly, in the late 00’s we initiated a research line consisting of training visual models using photo-realistic computer graphics, especially focusing on assisted and autonomous driving. In this paper, we summarize such a work and show how it has become a new tendency with increasing acceptance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ LVS2017 Serial 2985
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados
Title Learning structural loss parameters on graph embedding applied on symbolic graphs Type Conference Article
Year 2017 Publication 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract We propose an amelioration of proposed Graph Embedding (GEM) method in previous work that takes advantages of structural pattern representation and the structured distortion. it models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector, as new signature of AG in a lower dimensional vectorial space. We focus to adapt the structured learning algorithm via 1_slack formulation with a suitable risk function, called Graph Edit Distance (GED). It defines the dissimilarity of the ground truth and predicted graph labels. It determines by the error tolerant graph matching using bipartite graph matching algorithm. We apply Structured Support Vector Machines (SSVM) to process classification task. During our experiments, we got our results on the GREC dataset.
Address Kyoto; Japan; November 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GREC
Notes DAG; 600.097; 600.121 Approved no
Call Number Admin @ si @ JRL2017b Serial 3073
Permanent link to this record
 

 
Author Xavier Soria; Angel Sappa; Arash Akbarinia
Title Multispectral Single-Sensor RGB-NIR Imaging: New Challenges and Opportunities Type Conference Article
Year 2017 Publication 7th International Conference on Image Processing Theory, Tools & Applications Abbreviated Journal
Volume Issue Pages
Keywords Color restoration; Neural networks; Singlesensor cameras; Multispectral images; RGB-NIR dataset
Abstract Multispectral images captured with a single sensor camera have become an attractive alternative for numerous computer vision applications. However, in order to fully exploit their potentials, the color restoration problem (RGB representation) should be addressed. This problem is more evident in outdoor scenarios containing vegetation, living beings, or specular materials. The problem of color distortion emerges from the sensitivity of sensors due to the overlap of visible and near infrared spectral bands. This paper empirically evaluates the variability of the near infrared (NIR) information with respect to the changes of light throughout the day. A tiny neural network is proposed to restore the RGB color representation from the given RGBN (Red, Green, Blue, NIR) images. In order to evaluate the proposed algorithm, different experiments on a RGBN outdoor dataset are conducted, which include various challenging cases. The obtained result shows the challenge and the importance of addressing color restoration in single sensor multispectral images.
Address Montreal; Canada; November 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IPTA
Notes NEUROBIT; MSIAU; 600.122 Approved no
Call Number Admin @ si @ SSA2017 Serial 3074
Permanent link to this record
 

 
Author Alexey Dosovitskiy; German Ros; Felipe Codevilla; Antonio Lopez; Vladlen Koltun
Title CARLA: An Open Urban Driving Simulator Type Conference Article
Year 2017 Publication 1st Annual Conference on Robot Learning. Proceedings of Machine Learning Abbreviated Journal
Volume 78 Issue Pages 1-16
Keywords Autonomous driving; sensorimotor control; simulation
Abstract We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end
model trained via imitation learning, and an end-to-end model trained via
reinforcement learning. The approaches are evaluated in controlled scenarios of
increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform’s utility for autonomous driving research.
Address Mountain View; CA; USA; November 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CORL
Notes ADAS; 600.085; 600.118 Approved no
Call Number Admin @ si @ DRC2017 Serial 2988
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga
Title Colour Constancy Beyond the Classical Receptive Field Type Journal Article
Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 40 Issue 9 Pages 2081 - 2094
Keywords
Abstract The problem of removing illuminant variations to preserve the colours of objects (colour constancy) has already been solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron's receptive field (RF) as well as the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs' outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual system operates. These results might provide an insight on how dynamical adaptation mechanisms contribute to make object's colours appear constant to us.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes NEUROBIT; 600.068; 600.072 Approved no
Call Number Admin @ si @ AkP2018a Serial 2990
Permanent link to this record