|   | 
Details
   web
Records
Author Debora Gil; Sergio Vera; Agnes Borras; Albert Andaluz; Miguel Angel Gonzalez Ballester
Title Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities Type Journal Article
Year 2017 Publication Medical Image Analysis Abbreviated Journal MIA
Volume 35 Issue Pages 390-402
Keywords Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points
Abstract Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a con dent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies.
Address
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.060; 600.096; 600.075; 600.145 Approved no
Call Number Admin @ si @ GVB2017 Serial 2775
Permanent link to this record
 

 
Author Daniel Hernandez; Alejandro Chacon; Antonio Espinosa; David Vazquez; Juan Carlos Moure; Antonio Lopez
Title Stereo Matching using SGM on the GPU Type Report
Year 2016 Publication Programming and Tuning Massively Parallel Systems Abbreviated Journal PUMPS
Volume Issue Pages
Keywords CUDA; Stereo; Autonomous Vehicle
Abstract Dense, robust and real-time computation of depth information from stereo-camera systems is a computationally demanding requirement for robotics, advanced driver assistance systems (ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm that propagates consistency constraints along several paths across the image. This work presents a real-time system producing reliable disparity estimation results on the new embedded energy efficient GPU devices. Our design runs on a Tegra X1 at 42 frames per second (fps) for an image size of 640x480, 128 disparity levels, and using 4 path directions for the SGM method.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference PUMPS
Notes ADAS; 600.085; 600.087; 600.076 Approved no
Call Number ADAS @ adas @ HCE2016b Serial 2776
Permanent link to this record
 

 
Author Joan M. Nuñez; Jorge Bernal; F. Javier Sanchez; Fernando Vilariño
Title Growing Algorithm for Intersection Detection (GRAID) in branching patterns Type Journal Article
Year 2015 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume 26 Issue 2 Pages 387-400
Keywords Bifurcation ; Crossroad; Intersection ;Retina ; Vessel
Abstract Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks Becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency condition (BT) and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that,unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performancelevels with the advantage that neither training nor parameter tuning is needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ;SIAI Approved no
Call Number Admin @ si @MBS2015 Serial 2777
Permanent link to this record
 

 
Author Gloria Fernandez Esparrach; Jorge Bernal; Maria Lopez Ceron; Henry Cordova; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; F. Javier Sanchez
Title Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps Type Journal Article
Year 2016 Publication Endoscopy Abbreviated Journal END
Volume 48 Issue 9 Pages 837-842
Keywords
Abstract Background and aims: Polyp miss-rate is a drawback of colonoscopy that increases significantly in small polyps. We explored the efficacy of an automatic computer vision method for polyp detection.
Methods: Our method relies on a model that defines polyp boundaries as valleys of image intensity. Valley information is integrated into energy maps which represent the likelihood of polyp presence.
Results: In 24 videos containing polyps from routine colonoscopies, all polyps were detected in at least one frame. Mean values of the maximum of energy map were higher in frames with polyps than without (p<0.001). Performance improved in high quality frames (AUC= 0.79, 95%CI: 0.70-0.87 vs 0.75, 95%CI: 0.66-0.83). Using 3.75 as maximum threshold value, sensitivity and specificity for detection of polyps were 70.4% (95%CI: 60.3-80.8) and 72.4% (95%CI: 61.6-84.6), respectively.
Conclusion: Energy maps showed a good performance for colonic polyp detection. This indicates a potential applicability in clinical practice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; Approved no
Call Number Admin @ si @FBL2016 Serial 2778
Permanent link to this record
 

 
Author Gloria Fernandez Esparrach; Jorge Bernal; Cristina Rodriguez de Miguel; Debora Gil; Fernando Vilariño; Henry Cordova; Cristina Sanchez Montes; Isis Ara
Title Utilidad de la visión por computador para la localización de pólipos pequeños y planos Type Conference Article
Year 2016 Publication XIX Reunión Nacional de la Asociación Española de Gastroenterología, Gastroenterology Hepatology Abbreviated Journal
Volume 39 Issue 2 Pages 94
Keywords
Abstract
Address Madrid (Spain)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference AEGASTRO
Notes MV; IAM; 600.097;SIAI Approved no
Call Number Admin @ si @FBR2016 Serial 2779
Permanent link to this record
 

 
Author E. Tavalera; Mariella Dimiccoli; Marc Bolaños; Maedeh Aghaei; Petia Radeva
Title Regularized Clustering for Egocentric Video Segmentation Type Book Chapter
Year 2015 Publication Pattern Recognition and Image Analysis Abbreviated Journal
Volume Issue Pages 327-336
Keywords Temporal video segmentation ; Egocentric videos ; Clustering
Abstract In this paper, we present a new method for egocentric video temporal segmentation based on integrating a statistical mean change detector and agglomerative clustering(AC) within an energyminimization framework. Given the tendency of most AC methods to oversegment video sequences when clustering their frames, we combine the clustering with a concept drift detection technique (ADWIN) that has rigorous guarantee of performances. ADWIN serves as a statistical upper bound for the clustering-based video segmentation. We integrate techniques in an energy-minimization framework that serves disambiguate the decision of both techniques and to complete the segmentation taking into account the temporal continuity of video frames We present experiments over egocentric sets of more than 13.000 images acquired with different wearable cameras, showing that our method outperforms state-of-the-art clustering methods.
Address
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-19390-8 Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @TDB2015a Serial 2781
Permanent link to this record
 

 
Author Francesco Ciompi; Simone Balocco; Juan Rigla; Xavier Carrillo; Josefina Mauri; Petia Radeva
Title Computer-Aided Detection of Intra-Coronary Stent in Intravascular Ultrasound Sequences Type Journal Article
Year 2016 Publication Medical Physics Abbreviated Journal MP
Volume 43 Issue 10 Pages
Keywords
Abstract Purpose: An intraluminal coronary stent is a metal mesh tube deployed in a stenotic artery during Percutaneous Coronary Intervention (PCI), in order to prevent acute vessel occlusion. The identication of struts location and the denition of the stent shape are relevant for PCI planning 15 and for patient follow-up. We present a fully-automatic framework for Computer-Aided Detection
(CAD) of intra-coronary stents in Intravascular Ultrasound (IVUS) image sequences. The CAD system is able to detect stent struts and estimate the stent shape.

Methods: The proposed CAD uses machine learning to provide a comprehensive interpretation of the local structure of the vessel by means of semantic classication. The output of the classication 20 stage is then used to detect struts and to estimate the stent shape. The proposed approach is validated using a multi-centric data-set of 1,015 images from 107 IVUS sequences containing both metallic and bio-absorbable stents.

Results: The method was able to detect structs in both metallic stents with an overall F-measure of 77.7% and a mean distance of 0.15 mm from manually annotated struts, and in bio-absorbable 25 stents with an overall F-measure of 77.4% and a mean distance of 0.09 mm from manually annotated struts.

Conclusions: The results are close to the inter-observer variability and suggest that the system has the potential of being used as method for aiding percutaneous interventions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ CBR2016 Serial 2819
Permanent link to this record
 

 
Author Mariella Dimiccoli
Title Fundamentals of cone regression Type Journal
Year 2016 Publication Journal of Statistics Surveys Abbreviated Journal
Volume 10 Issue Pages 53-99
Keywords cone regression; linear complementarity problems; proximal operators.
Abstract Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1935-7516 ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number Admin @ si @Dim2016a Serial 2783
Permanent link to this record
 

 
Author Jean-Pascal Jacob; Mariella Dimiccoli; L. Moisan
Title Active skeleton for bacteria modelling Type Journal Article
Year 2017 Publication Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization Abbreviated Journal CMBBE
Volume 5 Issue 4 Pages 274-286
Keywords
Abstract The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modelling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness and orientation), an improved boundary accuracy in noisy images and a natural bacteria-centred coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimising an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modelling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at http://fluobactracker.inrialpes.fr.
Address
Corporate Author Thesis
Publisher Taylor & Francis Group Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number Admin @ si @JDM2017 Serial 2784
Permanent link to this record
 

 
Author A.S. Coquel; Jean-Pascal Jacob; M. Primet; A. Demarez; Mariella Dimiccoli; T. Julou; L. Moisan; A. Lindner; H. Berry
Title Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect Type Journal Article
Year 2013 Publication Plos Computational Biology Abbreviated Journal PCB
Volume 9 Issue 4 Pages
Keywords
Abstract Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli.
Address
Corporate Author Thesis
Publisher Place of Publication Editor : Stanislav Shvartsman, Princeton University, United States of America
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @CJP2013 Serial 2786
Permanent link to this record
 

 
Author Mariella Dimiccoli; Benoît Girard; Alain Berthoz; Daniel Bennequin
Title Striola Magica: a functional explanation of otolith organs Type Journal Article
Year 2013 Publication Journal of Computational Neuroscience Abbreviated Journal JCN
Volume 35 Issue 2 Pages 125-154
Keywords Otolith organs ;Striola; Vestibular pathway
Abstract Otolith end organs of vertebrates sense linear accelerations of the head and gravitation. The hair cells on their epithelia are responsible for transduction. In mammals, the striola, parallel to the line where hair cells reverse their polarization, is a narrow region centered on a curve with curvature and torsion. It has been shown that the striolar region is functionally different from the rest, being involved in a phasic vestibular pathway. We propose a mathematical and computational model that explains the necessity of this amazing geometry for the striola to be able to carry out its function. Our hypothesis, related to the biophysics of the hair cells and to the physiology of their afferent neurons, is that striolar afferents collect information from several type I hair cells to detect the jerk in a large domain of acceleration directions. This predicts a mean number of two calyces for afferent neurons, as measured in rodents. The domain of acceleration directions sensed by our striolar model is compatible with the experimental results obtained on monkeys considering all afferents. Therefore, the main result of our study is that phasic and tonic vestibular afferents cover the same geometrical fields, but at different dynamical and frequency domains.
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1573-6873. 2013 ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @DBG2013 Serial 2787
Permanent link to this record
 

 
Author Maria Oliver; Gloria Haro; Mariella Dimiccoli; Baptiste Mazin; Coloma Ballester
Title A computational model of amodal completion Type Conference Article
Year 2016 Publication SIAM Conference on Imaging Science Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper presents a computational model to recover the most likely interpretation of the 3D scene structure from a planar image, where some objects may occlude others. The estimated scene interpretation is obtained by integrating some global and local cues and provides both the complete disoccluded objects that form the scene and their ordering according to depth. Our method first computes several distal scenes which are compatible with the proximal planar image. To compute these different hypothesized scenes, we propose a perceptually inspired object disocclusion method, which works by minimizing the Euler's elastica as well as by incorporating the relatability of partially occluded contours and the convexity of the disoccluded objects. Then, to estimate the preferred scene we rely on a Bayesian model and define probabilities taking into account the global complexity of the objects in the hypothesized scenes as well as the effort of bringing these objects in their relative position in the planar image, which is also measured by an Euler's elastica-based quantity. The model is illustrated with numerical experiments on, both, synthetic and real images showing the ability of our model to reconstruct the occluded objects and the preferred perceptual order among them. We also present results on images of the Berkeley dataset with provided figure-ground ground-truth labeling.
Address Albuquerque; New Mexico; USA; May 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IS
Notes MILAB; 601.235 Approved no
Call Number Admin @ si @OHD2016a Serial 2788
Permanent link to this record
 

 
Author G. de Oliveira; A. Cartas; Marc Bolaños; Mariella Dimiccoli; Xavier Giro; Petia Radeva
Title LEMoRe: A Lifelog Engine for Moments Retrieval at the NTCIR-Lifelog LSAT Task Type Conference Article
Year 2016 Publication 12th NTCIR Conference on Evaluation of Information Access Technologies Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Semantic image retrieval from large amounts of egocentric visual data requires to leverage powerful techniques for filling in the semantic gap. This paper introduces LEMoRe, a Lifelog Engine for Moments Retrieval, developed in the context of the Lifelog Semantic Access Task (LSAT) of the the NTCIR-12 challenge and discusses its performance variation on different trials. LEMoRe integrates classical image descriptors with high-level semantic concepts extracted by Convolutional Neural Networks (CNN), powered by a graphic user interface that uses natural language processing. Although this is just a first attempt towards interactive image retrieval from large egocentric datasets and there is a large room for improvement of the system components and the user interface, the structure of the system itself and the way the single components cooperate are very promising.
Address Tokyo; Japan; June 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference NTCIR
Notes MILAB; Approved no
Call Number Admin @ si @OCB2016 Serial 2789
Permanent link to this record
 

 
Author G. de Oliveira; Mariella Dimiccoli; Petia Radeva
Title Egocentric Image Retrieval With Deep Convolutional Neural Networks Type Conference Article
Year 2016 Publication 19th International Conference of the Catalan Association for Artificial Intelligence Abbreviated Journal
Volume Issue Pages 71-76
Keywords
Abstract
Address Barcelona; Spain; October 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CCIA
Notes MILAB Approved no
Call Number Admin @ si @ODR2016 Serial 2790
Permanent link to this record
 

 
Author Maedeh Aghaei; Mariella Dimiccoli; Petia Radeva
Title With whom do I interact with? Social interaction detection in egocentric photo-streams Type Conference Article
Year 2016 Publication 23rd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Given a user wearing a low frame rate wearable camera during a day, this work aims to automatically detect the moments when the user gets engaged into a social interaction solely by reviewing the automatically captured photos by the worn camera. The proposed method, inspired by the sociological concept of F-formation, exploits distance and orientation of the appearing individuals -with respect to the user- in the scene from a bird-view perspective. As a result, the interaction pattern over the sequence can be understood as a two-dimensional time series that corresponds to the temporal evolution of the distance and orientation features over time. A Long-Short Term Memory-based Recurrent Neural Network is then trained to classify each time series. Experimental evaluation over a dataset of 30.000 images has shown promising results on the proposed method for social interaction detection in egocentric photo-streams.
Address Cancun; Mexico; December 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes MILAB Approved no
Call Number Admin @ si @ADR2016a Serial 2791
Permanent link to this record