|   | 
Details
   web
Records
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil
Title BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation Type Journal Article
Year 2023 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB
Volume 228 Issue Pages 107241
Keywords Videobronchoscopy guiding; Deep learning; Architecture optimization; Datasets; Standardized evaluation framework; Pose estimation
Abstract Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions.
In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number Admin @ si @ BSC2023 Serial (down) 3702
Permanent link to this record
 

 
Author Giuseppe Pezzano; Vicent Ribas Ripoll; Petia Radeva
Title CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation Type Journal Article
Year 2021 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB
Volume 198 Issue Pages 105792
Keywords
Abstract Background and objective:An accurate segmentation of lung nodules in computed tomography images is a crucial step for the physical characterization of the tumour. Being often completely manually accomplished, nodule segmentation turns to be a tedious and time-consuming procedure and this represents a high obstacle in clinical practice. In this paper, we propose a novel Convolutional Neural Network for nodule segmentation that combines a light and efficient architecture with innovative loss function and segmentation strategy. Methods:In contrast to most of the standard end-to-end architectures for nodule segmentation, our network learns the context of the nodules by producing two masks representing all the background and secondary-important elements in the Computed Tomography scan. The nodule is detected by subtracting the context from the original scan image. Additionally, we introduce an asymmetric loss function that automatically compensates for potential errors in the nodule annotations. We trained and tested our Neural Network on the public LIDC-IDRI database, compared it with the state of the art and run a pseudo-Turing test between four radiologists and the network. Results:The results proved that the behaviour of the algorithm is very near to the human performance and its segmentation masks are almost indistinguishable from the ones made by the radiologists. Our method clearly outperforms the state of the art on CT nodule segmentation in terms of F1 score and IoU of and respectively. Conclusions: The main structure of the network ensures all the properties of the UNet architecture, while the Multi Convolutional Layers give a more accurate pattern recognition. The newly adopted solutions also increase the details on the border of the nodule, even under the noisiest conditions. This method can be applied now for single CT slice nodule segmentation and it represents a starting point for the future development of a fully automatic 3D segmentation software.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ PRR2021 Serial (down) 3530
Permanent link to this record
 

 
Author Sumit K. Banchhor; Tadashi Araki; Narendra D. Londhe; Nobutaka Ikeda; Petia Radeva; Ayman El-Baz; Luca Saba; Andrew Nicolaides; Shoaib Shafique; John R. Laird; Jasjit S. Suri
Title Five multiresolution-based calcium volume measurement techniques from coronary IVUS videos: A comparative approach Type Journal Article
Year 2016 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB
Volume 134 Issue Pages 237-258
Keywords
Abstract BACKGROUND AND OBJECTIVE:
Fast intravascular ultrasound (IVUS) video processing is required for calcium volume computation during the planning phase of percutaneous coronary interventional (PCI) procedures. Nonlinear multiresolution techniques are generally applied to improve the processing time by down-sampling the video frames.
METHODS:
This paper presents four different segmentation methods for calcium volume measurement, namely Threshold-based, Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) embedded with five different kinds of multiresolution techniques (bilinear, bicubic, wavelet, Lanczos, and Gaussian pyramid). This leads to 20 different kinds of combinations. IVUS image data sets consisting of 38,760 IVUS frames taken from 19 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/sec.). The performance of these 20 systems is compared with and without multiresolution using the following metrics: (a) computational time; (b) calcium volume; (c) image quality degradation ratio; and (d) quality assessment ratio.
RESULTS:
Among the four segmentation methods embedded with five kinds of multiresolution techniques, FCM segmentation combined with wavelet-based multiresolution gave the best performance. FCM and wavelet experienced the highest percentage mean improvement in computational time of 77.15% and 74.07%, respectively. Wavelet interpolation experiences the highest mean precision-of-merit (PoM) of 94.06 ± 3.64% and 81.34 ± 16.29% as compared to other multiresolution techniques for volume level and frame level respectively. Wavelet multiresolution technique also experiences the highest Jaccard Index and Dice Similarity of 0.7 and 0.8, respectively. Multiresolution is a nonlinear operation which introduces bias and thus degrades the image. The proposed system also provides a bias correction approach to enrich the system, giving a better mean calcium volume similarity for all the multiresolution-based segmentation methods. After including the bias correction, bicubic interpolation gives the largest increase in mean calcium volume similarity of 4.13% compared to the rest of the multiresolution techniques. The system is automated and can be adapted in clinical settings.
CONCLUSIONS:
We demonstrated the time improvement in calcium volume computation without compromising the quality of IVUS image. Among the 20 different combinations of multiresolution with calcium volume segmentation methods, the FCM embedded with wavelet-based multiresolution gave the best performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number Admin @ si @ BAL2016 Serial (down) 2830
Permanent link to this record
 

 
Author Tadashi Araki; Nobutaka Ikeda; Nilanjan Dey; Sayan Chakraborty; Luca Saba; Dinesh Kumar; Elisa Cuadrado Godia; Xiaoyi Jiang; Ajay Gupta; Petia Radeva; John R. Laird; Andrew Nicolaides; Jasjit S. Suri
Title A comparative approach of four different image registration techniques for quantitative assessment of coronary artery calcium lesions using intravascular ultrasound Type Journal Article
Year 2015 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB
Volume 118 Issue 2 Pages 158-172
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ AID2015 Serial (down) 2640
Permanent link to this record