toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Giovanni Maria Farinella; Petia Radeva; Jose Braz edit  openurl
  Title Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications Type Book Whole
  Year 2020 Publication Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications; VISIGRAPP 2020 Abbreviated Journal  
  Volume 4 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ FRB2020a Serial 3546  
Permanent link to this record
 

 
Author Giovanni Maria Farinella; Petia Radeva; Jose Braz edit  openurl
  Title Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications Type Book Whole
  Year 2020 Publication Proceedings of the 15th International Joint Conference on Computer Vision; Imaging and Computer Graphics Theory and Applications; VISIGRAPP 2020 Abbreviated Journal  
  Volume 5 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ FRB2020b Serial 3547  
Permanent link to this record
 

 
Author Edgar Riba edit  openurl
  Title Geometric Computer Vision Techniques for Scene Reconstruction Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract From the early stages of Computer Vision, scene reconstruction has been one of the most studied topics leading to a wide variety of new discoveries and applications. Object grasping and manipulation, localization and mapping, or even visual effect generation are different examples of applications in which scene reconstruction has taken an important role for industries such as robotics, factory automation, or audio visual production. However, scene reconstruction is an extensive topic that can be approached in many different ways with already existing solutions that effectively work in controlled environments. Formally, the problem of scene reconstruction can be formulated as a sequence of independent processes which compose a pipeline. In this thesis, we analyse some parts of the reconstruction pipeline from which we contribute with novel methods using Convolutional Neural Networks (CNN) proposing innovative solutions that consider the optimisation of the methods in an end-to-end fashion. First, we review the state of the art of classical local features detectors and descriptors and contribute with two novel methods that inherently improve pre-existing solutions in the scene reconstruction pipeline.

It is a fact that computer science and software engineering are two fields that usually go hand in hand and evolve according to mutual needs making easier the design of complex and efficient algorithms. For this reason, we contribute with Kornia, a library specifically designed to work with classical computer vision techniques along with deep neural networks. In essence, we created a framework that eases the design of complex pipelines for computer vision algorithms so that can be included within neural networks and be used to backpropagate gradients throw a common optimisation framework. Finally, in the last chapter of this thesis we develop the aforementioned concept of designing end-to-end systems with classical projective geometry. Thus, we contribute with a solution to the problem of synthetic view generation by hallucinating novel views from high deformable cloths objects using a geometry aware end-to-end system. To summarize, in this thesis we demonstrate that with a proper design that combine classical geometric computer vision methods with deep learning techniques can lead to improve pre-existing solutions for the problem of scene reconstruction.
 
  Address February 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Place of Publication Editor Daniel Ponsa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ Rib2021 Serial 3610  
Permanent link to this record
 

 
Author Giovanni Maria Farinella; Petia Radeva; Jose Braz; Kadi Bouatouch edit  url
openurl 
  Title Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Volume 4) Type Book Whole
  Year 2021 Publication Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021 Abbreviated Journal  
  Volume 4 Issue Pages  
  Keywords  
  Abstract This book contains the proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) which was organized and sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), endorsed by the International Association for Pattern Recognition (IAPR), and in cooperation with the ACM Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH), the European Association for Computer Graphics (EUROGRAPHICS), the EUROGRAPHICS Portuguese Chapter, the VRVis Center for Virtual Reality and Visualization Forschungs-GmbH, the French Association for Computer Graphics (AFIG), and the Society for Imaging Science and Technology (IS&T). The proceedings here published demonstrate new and innovative solutions and highlight technical problems in each field that are challenging and worthy of being disseminated to the interested research audiences. VISIGRAPP 2021 was organized to promote a discussion forum about the conference’s research topics between researchers, developers, manufacturers and end-users, and to establish guidelines in the development of more advanced solutions. This year VISIGRAPP was, exceptionally, held as a web-based event, due to the COVID-19 pandemic, from 8 – 10 February. We received a high number of paper submissions for this edition of VISIGRAPP, 371 in total, with contributions from 52 countries. This attests to the success and global dimension of VISIGRAPP. To evaluate each submission, we used a hierarchical process of double-blind evaluation where each paper was reviewed by two to six experts from the International Program Committee (IPC). The IPC selected for oral presentation and for publication as full papers 12 papers from GRAPP, 8 from HUCAPP, 11 papers from IVAPP, and 56 papers from VISAPP, which led to a result for the full-paper acceptance ratio of 24% and a high-quality program. Apart from the above full papers, the conference program also features 118 short papers and 67 poster presentations. We hope that these conference proceedings, which are submitted for indexation by Thomson Reuters Conference Proceedings Citation Index, SCOPUS, DBLP, Semantic Scholar, Google Scholar, EI and Microsoft Academic, will help the Computer Vision, Imaging, Visualization, Computer Graphics and Human-Computer Interaction communities to find interesting research work. Moreover, we are proud to inform that the program also includes three plenary keynote lectures, given by internationally distinguished researchers, namely Federico Tombari (Google and Technical University of Munich, Germany), Dieter Schmalstieg (Graz University of Technology, Austria) and Nathalie Henry Riche (Microsoft Research, United States), thus contributing to increase the overall quality of the conference and to provide a deeper understanding of the conference’s interest fields. Furthermore, a short list of the presented papers will be selected to be extended into a forthcoming book of VISIGRAPP Selected Papers to be published by Springer during 2021 in the CCIS series. Moreover, a short list of presented papers will be selected for publication of extended and revised versions in a special issue of the Springer Nature Computer Science journal. All papers presented at this conference will be available at the SCITEPRESS Digital Library. Three awards are delivered at the closing session, to recognize the best conference paper, the best student paper and the best poster for each of the four conferences. There is also an award for best industrial paper to be delivered at the closing session for VISAPP. We would like to express our thanks, first of all, to the authors of the technical papers, whose work and dedication made it possible to put together a program that we believe to be very exciting and of high technical quality. Next, we would like to thank the Area Chairs, all the members of the program committee and auxiliary reviewers, who helped us with their expertise and time. We would also like to thank the invited speakers for their invaluable contribution and for sharing their vision in their talks. Finally, we gratefully acknowledge the professional support of the INSTICC team for all organizational processes, especially given the need to introduce online streaming, forum management, direct messaging facilitation and other web-based activities in order to make it possible for VISIGRAPP 2021 authors to present their work and share ideas with colleagues in spite of the logistic difficulties caused by the current pandemic situation. We wish you all an exciting conference. We hope to meet you again for the next edition of VISIGRAPP, details of which are available at http://www. visigrapp.org  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes MILAB Approved no  
  Call Number Admin @ si @ FRB2021a Serial 3627  
Permanent link to this record
 

 
Author Giovanni Maria Farinella; Petia Radeva; Jose Braz; Kadi Bouatouch edit  url
openurl 
  Title Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications – (Volume 5) Type Book Whole
  Year 2021 Publication Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications – VISIGRAPP 2021 Abbreviated Journal  
  Volume 5 Issue Pages  
  Keywords  
  Abstract This book contains the proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) which was organized and sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), endorsed by the International Association for Pattern Recognition (IAPR), and in cooperation with the ACM Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH), the European Association for Computer Graphics (EUROGRAPHICS), the EUROGRAPHICS Portuguese Chapter, the VRVis Center for Virtual Reality and Visualization Forschungs-GmbH, the French Association for Computer Graphics (AFIG), and the Society for Imaging Science and Technology (IS&T). The proceedings here published demonstrate new and innovative solutions and highlight technical problems in each field that are challenging and worthy of being disseminated to the interested research audiences. VISIGRAPP 2021 was organized to promote a discussion forum about the conference’s research topics between researchers, developers, manufacturers and end-users, and to establish guidelines in the development of more advanced solutions. This year VISIGRAPP was, exceptionally, held as a web-based event, due to the COVID-19 pandemic, from 8 – 10 February. We received a high number of paper submissions for this edition of VISIGRAPP, 371 in total, with contributions from 52 countries. This attests to the success and global dimension of VISIGRAPP. To evaluate each submission, we used a hierarchical process of double-blind evaluation where each paper was reviewed by two to six experts from the International Program Committee (IPC). The IPC selected for oral presentation and for publication as full papers 12 papers from GRAPP, 8 from HUCAPP, 11 papers from IVAPP, and 56 papers from VISAPP, which led to a result for the full-paper acceptance ratio of 24% and a high-quality program. Apart from the above full papers, the conference program also features 118 short papers and 67 poster presentations. We hope that these conference proceedings, which are submitted for indexation by Thomson Reuters Conference Proceedings Citation Index, SCOPUS, DBLP, Semantic Scholar, Google Scholar, EI and Microsoft Academic, will help the Computer Vision, Imaging, Visualization, Computer Graphics and Human-Computer Interaction communities to find interesting research work. Moreover, we are proud to inform that the program also includes three plenary keynote lectures, given by internationally distinguished researchers, namely Federico Tombari (Google and Technical University of Munich, Germany), Dieter Schmalstieg (Graz University of Technology, Austria) and Nathalie Henry Riche (Microsoft Research, United States), thus contributing to increase the overall quality of the conference and to provide a deeper understanding of the conference’s interest fields. Furthermore, a short list of the presented papers will be selected to be extended into a forthcoming book of VISIGRAPP Selected Papers to be published by Springer during 2021 in the CCIS series. Moreover, a short list of presented papers will be selected for publication of extended and revised versions in a special issue of the Springer Nature Computer Science journal. All papers presented at this conference will be available at the SCITEPRESS Digital Library. Three awards are delivered at the closing session, to recognize the best conference paper, the best student paper and the best poster for each of the four conferences. There is also an award for best industrial paper to be delivered at the closing session for VISAPP. We would like to express our thanks, first of all, to the authors of the technical papers, whose work and dedication made it possible to put together a program that we believe to be very exciting and of high technical quality. Next, we would like to thank the Area Chairs, all the members of the program committee and auxiliary reviewers, who helped us with their expertise and time. We would also like to thank the invited speakers for their invaluable contribution and for sharing their vision in their talks. Finally, we gratefully acknowledge the professional support of the INSTICC team for all organizational processes, especially given the need to introduce online streaming, forum management, direct messaging facilitation and other web-based activities in order to make it possible for VISIGRAPP 2021 authors to present their work and share ideas with colleagues in spite of the logistic difficulties caused by the current pandemic situation. We wish you all an exciting conference. We hope to meet you again for the next edition of VISIGRAPP, details of which are available at http://www. visigrapp.org.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes MILAB Approved no  
  Call Number Admin @ si @ FRB2021b Serial 3628  
Permanent link to this record
 

 
Author Michael Teutsch; Angel Sappa; Riad I. Hammoud edit  url
isbn  openurl
  Title Computer Vision in the Infrared Spectrum: Challenges and Approaches Type Book Whole
  Year 2021 Publication Synthesis Lectures on Computer Vision Abbreviated Journal  
  Volume 10 Issue 2 Pages 1-138  
  Keywords  
  Abstract Human visual perception is limited to the visual-optical spectrum. Machine vision is not. Cameras sensitive to the different infrared spectra can enhance the abilities of autonomous systems and visually perceive the environment in a holistic way. Relevant scene content can be made visible especially in situations, where sensors of other modalities face issues like a visual-optical camera that needs a source of illumination. As a consequence, not only human mistakes can be avoided by increasing the level of automation, but also machine-induced errors can be reduced that, for example, could make a self-driving car crash into a pedestrian under difficult illumination conditions. Furthermore, multi-spectral sensor systems with infrared imagery as one modality are a rich source of information and can provably increase the robustness of many autonomous systems. Applications that can benefit from utilizing infrared imagery range from robotics to automotive and from biometrics to surveillance. In this book, we provide a brief yet concise introduction to the current state-of-the-art of computer vision and machine learning in the infrared spectrum. Based on various popular computer vision tasks such as image enhancement, object detection, or object tracking, we first motivate each task starting from established literature in the visual-optical spectrum. Then, we discuss the differences between processing images and videos in the visual-optical spectrum and the various infrared spectra. An overview of the current literature is provided together with an outlook for each task. Furthermore, available and annotated public datasets and common evaluation methods and metrics are presented. In a separate chapter, popular applications that can greatly benefit from the use of infrared imagery as a data source are presented and discussed. Among them are automatic target recognition, video surveillance, or biometrics including face recognition. Finally, we conclude with recommendations for well-fitting sensor setups and data processing algorithms for certain computer vision tasks. We address this book to prospective researchers and engineers new to the field but also to anyone who wants to get introduced to the challenges and the approaches of computer vision using infrared images or videos. Readers will be able to start their work directly after reading the book supported by a highly comprehensive backlog of recent and relevant literature as well as related infrared datasets including existing evaluation frameworks. Together with consistently decreasing costs for infrared cameras, new fields of application appear and make computer vision in the infrared spectrum a great opportunity to face nowadays scientific and engineering challenges.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1636392431 Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ TSH2021 Serial 3666  
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani edit  isbn
openurl 
  Title Towards Efficient and Robust Convolutional Neural Networks for Single Image Super-Resolution Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Single image super-resolution (SISR) is an important task in image processing which aims to enhance the resolution of imaging systems. Recently, SISR has witnessed great strides with the rapid development of deep learning. Recent advances in SISR are mostly devoted to designing deeper and wider networks to enhance their representation learning capacity. However, as the depth of networks increases, deep learning-based methods are faced with the challenge of computational complexity in practice. Moreover, most existing methods rarely leverage the intermediate features and also do not discriminate the computation of features by their frequencial components, thereby achieving relatively low performance. Aside from the aforementioned problems, another desired ability is to upsample images to arbitrary scales using a single model. Most current SISR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements. In this thesis, we address the aforementioned issues and propose solutions to them: i) We present a novel frequency-based enhancement block which treats different frequencies in a heterogeneous way and also models inter-channel dependencies, which consequently enrich the output feature. Thus it helps the network generate more discriminative representations by explicitly recovering finer details. ii) We introduce OverNet which contains two main parts: a lightweight feature extractor that follows a novel recursive framework of skip and dense connections to reduce low-level feature degradation, and an overscaling module that generates an accurate SR image by internally constructing an overscaled intermediate representation of the output features. Then, to solve the problem of reconstruction at arbitrary scale factors, we introduce a novel multi-scale loss, that allows the simultaneous training of all scale factors using a single model. iii) We propose a directional variance attention network which leverages a novel attention mechanism to enhance features in different channels and spatial regions. Moreover, we introduce a novel procedure for using attention mechanisms together with residual blocks to facilitate the preservation of finer details. Finally, we demonstrate that our approaches achieve considerably better performance than previous state-of-the-art methods, in terms of both quantitative and visual quality.  
  Address April, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Place of Publication Editor Jordi Gonzalez;Xavier Roca;Pau Rodriguez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-1-7 Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Beh2022 Serial 3713  
Permanent link to this record
 

 
Author Kai Wang edit  isbn
openurl 
  Title Continual learning for hierarchical classification, few-shot recognition, and multi-modal learning Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep learning has drastically changed computer vision in the past decades and achieved great success in many applications, such as image classification, retrieval, detection, and segmentation thanks to the emergence of neural networks. Typically, for most applications, these networks are presented with examples from all tasks they are expected to perform. However, for many applications, this is not a realistic
scenario, and an algorithm is required to learn tasks sequentially. Continual learning proposes theory and methods for this scenario.
The main challenge for continual learning systems is called catastrophic forgetting and refers to a significant drop in performance on previous tasks. To tackle this problem, three main branches of methods have been explored to alleviate the forgetting in continual learning. They are regularization-based methods, rehearsalbased methods, and parameter isolation-based methods. However, most of them are focused on image classification tasks. Continual learning of many computer vision fields has still not been well-explored. Thus, in this thesis, we extend the continual learning knowledge to meta learning, we propose a method for the incremental learning of hierarchical relations for image classification, we explore image recognition in online continual learning, and study continual learning for cross-modal learning.
In this thesis, we explore the usage of image rehearsal when addressing the incremental meta learning problem. Observing that existingmethods fail to improve performance with saved exemplars, we propose to mix exemplars with current task data and episode-level distillation to overcome forgetting in incremental meta learning. Next, we study a more realistic image classification scenario where each class has multiple granularity levels. Only one label is present at any time, which requires the model to infer if the provided label has a hierarchical relation with any already known label. In experiments, we show that the estimated hierarchy information can be beneficial in both the training and inference stage.
For the online continual learning setting, we investigate the usage of intermediate feature replay. In this case, the training samples are only observed by the model only one time. Here we fix thememory buffer for feature replay and compare the effectiveness of saving features from different layers. Finally, we investigate multi-modal continual learning, where an image encoder is cooperating with a semantic branch. We consider the continual learning of both zero-shot learning and cross-modal retrieval problems.
 
  Address July, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Place of Publication Editor Luis Herranz;Joost Van de Weijer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-2-4 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Wan2022 Serial 3714  
Permanent link to this record
 

 
Author Aitor Alvarez-Gila edit  openurl
  Title Self-supervised learning for image-to-image translation in the small data regime Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords Computer vision; Neural networks; Self-supervised learning; Image-to-image mapping; Probabilistic programming  
  Abstract The mass irruption of Deep Convolutional Neural Networks (CNNs) in computer vision since 2012 led to a dominance of the image understanding paradigm consisting in an end-to-end fully supervised learning workflow over large-scale annotated datasets. This approach proved to be extremely useful at solving a myriad of classic and new computer vision tasks with unprecedented performance —often, surpassing that of humans—, at the expense of vast amounts of human-labeled data, extensive computational resources and the disposal of all of our prior knowledge on the task at hand. Even though simple transfer learning methods, such as fine-tuning, have achieved remarkable impact, their success when the amount of labeled data in the target domain is small is limited. Furthermore, the non-static nature of data generation sources will often derive in data distribution shifts that degrade the performance of deployed models. As a consequence, there is a growing demand for methods that can exploit elements of prior knowledge and sources of information other than the manually generated ground truth annotations of the images during the network training process, so that they can adapt to new domains that constitute, if not a small data regime, at least a small labeled data regime. This thesis targets such few or no labeled data scenario in three distinct image-to-image mapping learning problems. It contributes with various approaches that leverage our previous knowledge of different elements of the image formation process: We first present a data-efficient framework for both defocus and motion blur detection, based on a model able to produce realistic synthetic local degradations. The framework comprises a self-supervised, a weakly-supervised and a semi-supervised instantiation, depending on the absence or availability and the nature of human annotations, and outperforms fully-supervised counterparts in a variety of settings. Our knowledge on color image formation is then used to gather input and target ground truth image pairs for the RGB to hyperspectral image reconstruction task. We make use of a CNN to tackle this problem, which, for the first time, allows us to exploit spatial context and achieve state-of-the-art results given a limited hyperspectral image set. In our last contribution to the subfield of data-efficient image-to-image transformation problems, we present the novel semi-supervised task of zero-pair cross-view semantic segmentation: we consider the case of relocation of the camera in an end-to-end trained and deployed monocular, fixed-view semantic segmentation system often found in industry. Under the assumption that we are allowed to obtain an additional set of synchronized but unlabeled image pairs of new scenes from both original and new camera poses, we present ZPCVNet, a model and training procedure that enables the production of dense semantic predictions in either source or target views at inference time. The lack of existing suitable public datasets to develop this approach led us to the creation of MVMO, a large-scale Multi-View, Multi-Object path-traced dataset with per-view semantic segmentation annotations. We expect MVMO to propel future research in the exciting under-developed fields of cross-view and multi-view semantic segmentation. Last, in a piece of applied research of direct application in the context of process monitoring of an Electric Arc Furnace (EAF) in a steelmaking plant, we also consider the problem of simultaneously estimating the temperature and spectral emissivity of distant hot emissive samples. To that end, we design our own capturing device, which integrates three point spectrometers covering a wide range of the Ultra-Violet, visible, and Infra-Red spectra and is capable of registering the radiance signal incoming from an 8cm diameter spot located up to 20m away. We then define a physically accurate radiative transfer model that comprises the effects of atmospheric absorbance, of the optical system transfer function, and of the sample temperature and spectral emissivity themselves. We solve this inverse problem without the need for annotated data using a probabilistic programming-based Bayesian approach, which yields full posterior distribution estimates of the involved variables that are consistent with laboratory-grade measurements.  
  Address Julu, 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Place of Publication Editor Joost Van de Weijer; Estibaliz Garrote  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Alv2022 Serial 3716  
Permanent link to this record
 

 
Author Idoia Ruiz edit  isbn
openurl 
  Title Deep Metric Learning for re-identification, tracking and hierarchical novelty detection Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Metric learning refers to the problem in machine learning of learning a distance or similarity measurement to compare data. In particular, deep metric learning involves learning a representation, also referred to as embedding, such that in the embedding space data samples can be compared based on the distance, directly providing a similarity measure. This step is necessary to perform several tasks in computer vision. It allows to perform the classification of images, regions or pixels, re-identification, out-of-distribution detection, object tracking in image sequences and any other task that requires computing a similarity score for their solution. This thesis addresses three specific problems that share this common requirement. The first one is person re-identification. Essentially, it is an image retrieval task that aims at finding instances of the same person according to a similarity measure. We first compare in terms of accuracy and efficiency, classical metric learning to basic deep learning based methods for this problem. In this context, we also study network distillation as a strategy to optimize the trade-off between accuracy and speed at inference time. The second problem we contribute to is novelty detection in image classification. It consists in detecting samples of novel classes, i.e. never seen during training. However, standard novelty detection does not provide any information about the novel samples besides they are unknown. Aiming at more informative outputs, we take advantage from the hierarchical taxonomies that are intrinsic to the classes. We propose a metric learning based approach that leverages the hierarchical relationships among classes during training, being able to predict the parent class for a novel sample in such hierarchical taxonomy. Our third contribution is in multi-object tracking and segmentation. This joint task comprises classification, detection, instance segmentation and tracking. Tracking can be formulated as a retrieval problem to be addressed with metric learning approaches. We tackle the existing difficulty in academic research that is the lack of annotated benchmarks for this task. To this matter, we introduce the problem of weakly supervised multi-object tracking and segmentation, facing the challenge of not having available ground truth for instance segmentation. We propose a synergistic training strategy that benefits from the knowledge of the supervised tasks that are being learnt simultaneously.  
  Address July, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Place of Publication Editor Joan Serrat  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-4-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rui2022 Serial 3717  
Permanent link to this record
 

 
Author Mickael Coustaty; Alicia Fornes edit  url
openurl 
  Title Document Analysis and Recognition – ICDAR 2023 Workshops Type Book Whole
  Year 2023 Publication Document Analysis and Recognition – ICDAR 2023 Workshops Abbreviated Journal  
  Volume 14194 Issue 2 Pages  
  Keywords  
  Abstract  
  Address San Jose; USA; August 2023  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ CoF2023 Serial 3852  
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li edit  url
openurl 
  Title Advances in Face Presentation Attack Detection Type Book Whole
  Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ WGE2023a Serial 3955  
Permanent link to this record
 

 
Author Laura Igual; Santiago Segui edit  isbn
openurl 
  Title Introduction to Data Science – A Python Approach to Concepts, Techniques and Applications. Undergraduate Topics in Computer Science Type Book Whole
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 1-215  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) 978-3-319-50016-4 Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-50016-4 Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ IgS2017 Serial 3027  
Permanent link to this record
 

 
Author Enric Marti; Jordi Vitria; Alberto Sanfeliu edit   pdf
isbn  openurl
  Title Reconocimiento de Formas y Análisis de Imágenes Type Book Whole
  Year 1998 Publication Asociación Española de Reconocimientos de Formas y Análisis de Imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Los sistemas actuales de reconocimiento automático del lenguaje oral se basan en dos etapas básicas de procesado: la parametrización, que extrae la evolución temporal de los parámetros que caracterizan la voz, y el reconocimiento propiamente dicho, que identifica la cadena de palabras de la elocución recibida con ayuda de los modelos que representan el conocimiento adquirido en la etapa de aprendizaje. Tomando como línea divisoria la palabra, dichos modelos son de tipo acústicofonético o gramatical. Los primeros caracterizan las palabras incluidas en el vocabulario de la aplicación o tarea a la que está orientado el sistema de reconocimiento, usando a menudo para ello modelos de unidades de habla de extensión inferior a la palabra, es decir, de unidades subléxicas. Por otro lado, la gramática incluye el conocimiento acerca de las combinaciones permitidas de palabras para formar las frases o su probabilidad. Queda fuera del esquema la denominada comprensión del habla, que utiliza adicionalmente el conocimiento semántico y pragmático para captar el significado de la elocución de entrada al sistema a partir de la cadena (o cadenas alternativas) de palabras que suministra el reconocedor.  
  Address  
  Corporate Author Thesis  
  Publisher (up) AERFAI Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84–922529–4–4 Medium  
  Area Expedition Conference  
  Notes IAM;OR;MV Approved no  
  Call Number IAM @ iam @ MVS1998 Serial 1620  
Permanent link to this record
 

 
Author Aymen Azaza edit  isbn
openurl 
  Title Context, Motion and Semantic Information for Computational Saliency Type Book Whole
  Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The main objective of this thesis is to highlight the salient object in an image or in a video sequence. We address three important—but in our opinion
insufficiently investigated—aspects of saliency detection. Firstly, we start
by extending previous research on saliency which explicitly models the information provided from the context. Then, we show the importance of
explicit context modelling for saliency estimation. Several important works
in saliency are based on the usage of object proposals. However, these methods
focus on the saliency of the object proposal itself and ignore the context.
To introduce context in such saliency approaches, we couple every object
proposal with its direct context. This allows us to evaluate the importance
of the immediate surround (context) for its saliency. We propose several
saliency features which are computed from the context proposals including
features based on omni-directional and horizontal context continuity. Secondly,
we investigate the usage of top-downmethods (high-level semantic
information) for the task of saliency prediction since most computational
methods are bottom-up or only include few semantic classes. We propose
to consider a wider group of object classes. These objects represent important
semantic information which we will exploit in our saliency prediction
approach. Thirdly, we develop a method to detect video saliency by computing
saliency from supervoxels and optical flow. In addition, we apply the
context features developed in this thesis for video saliency detection. The
method combines shape and motion features with our proposed context
features. To summarize, we prove that extending object proposals with their
direct context improves the task of saliency detection in both image and
video data. Also the importance of the semantic information in saliency
estimation is evaluated. Finally, we propose a newmotion feature to detect
saliency in video data. The three proposed novelties are evaluated on standard
saliency benchmark datasets and are shown to improve with respect to
state-of-the-art.
 
  Address October 2018  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Ali Douik  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-9-4 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ Aza2018 Serial 3218  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: