Home | [181–190] << 191 192 193 194 195 196 197 198 199 200 >> [201–210] |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Sounak Dey | ||||
Title | Mapping between Images and Conceptual Spaces: Sketch-based Image Retrieval | Type | Book Whole | ||
Year | 2020 | Publication | PhD Thesis, Universitat Autonoma de Barcelona-CVC | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | |||||
Abstract | This thesis presents several contributions to the literature of sketch based image retrieval (SBIR). In SBIR the first challenge we face is how to map two different domains to common space for effective retrieval of images, while tackling the different levels of abstraction people use to express their notion of objects around while sketching. To this extent we first propose a cross-modal learning framework that maps both sketches and text into a joint embedding space invariant to depictive style, while preserving semantics. Then we have also investigated different query types possible to encompass people's dilema in sketching certain world objects. For this we propose an approach for multi-modal image retrieval in multi-labelled images. A multi-modal deep network architecture is formulated to jointly model sketches and text as input query modalities into a common embedding space, which is then further aligned with the image feature space. This permits encoding the object-based features and its alignment with the query irrespective of the availability of the co-occurrence of different objects in the training set.
Finally, we explore the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognises two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended. We also in this dissertation pave the path to the future direction of research in this domain. |
||||
Address | |||||
Corporate Author | Thesis | Ph.D. thesis | |||
Publisher ![]() |
Ediciones Graficas Rey | Place of Publication | Editor | Josep Llados;Umapada Pal | |
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-84-121011-8-8 | Medium | ||
Area | Expedition | Conference | |||
Notes | DAG; 600.121 | Approved | no | ||
Call Number | Admin @ si @ Dey20 | Serial | 3480 | ||
Permanent link to this record | |||||
Author | Marc Masana | ||||
Title | Lifelong Learning of Neural Networks: Detecting Novelty and Adapting to New Domains without Forgetting | Type | Book Whole | ||
Year | 2020 | Publication | PhD Thesis, Universitat Autonoma de Barcelona-CVC | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | |||||
Abstract | Computer vision has gone through considerable changes in the last decade as neural networks have come into common use. As available computational capabilities have grown, neural networks have achieved breakthroughs in many computer vision tasks, and have even surpassed human performance in others. With accuracy being so high, focus has shifted to other issues and challenges. One research direction that saw a notable increase in interest is on lifelong learning systems. Such systems should be capable of efficiently performing tasks, identifying and learning new ones, and should moreover be able to deploy smaller versions of themselves which are experts on specific tasks. In this thesis, we contribute to research on lifelong learning and address the compression and adaptation of networks to small target domains, the incremental learning of networks faced with a variety of tasks, and finally the detection of out-of-distribution samples at inference time.
We explore how knowledge can be transferred from large pretrained models to more task-specific networks capable of running on smaller devices by extracting the most relevant information. Using a pretrained model provides more robust representations and a more stable initialization when learning a smaller task, which leads to higher performance and is known as domain adaptation. However, those models are too large for certain applications that need to be deployed on devices with limited memory and computational capacity. In this thesis we show that, after performing domain adaptation, some learned activations barely contribute to the predictions of the model. Therefore, we propose to apply network compression based on low-rank matrix decomposition using the activation statistics. This results in a significant reduction of the model size and the computational cost. Like human intelligence, machine intelligence aims to have the ability to learn and remember knowledge. However, when a trained neural network is presented with learning a new task, it ends up forgetting previous ones. This is known as catastrophic forgetting and its avoidance is studied in continual learning. The work presented in this thesis extensively surveys continual learning techniques and presents an approach to avoid catastrophic forgetting in sequential task learning scenarios. Our technique is based on using ternary masks in order to update a network to new tasks, reusing the knowledge of previous ones while not forgetting anything about them. In contrast to earlier work, our masks are applied to the activations of each layer instead of the weights. This considerably reduces the number of parameters to be added for each new task. Furthermore, the analysis on a wide range of work on incremental learning without access to the task-ID, provides insight on current state-of-the-art approaches that focus on avoiding catastrophic forgetting by using regularization, rehearsal of previous tasks from a small memory, or compensating the task-recency bias. Neural networks trained with a cross-entropy loss force the outputs of the model to tend toward a one-hot encoded vector. This leads to models being too overly confident when presented with images or classes that were not present in the training distribution. The capacity of a system to be aware of the boundaries of the learned tasks and identify anomalies or classes which have not been learned yet is key to lifelong learning and autonomous systems. In this thesis, we present a metric learning approach to out-of-distribution detection that learns the task at hand on an embedding space. |
||||
Address | |||||
Corporate Author | Thesis | Ph.D. thesis | |||
Publisher ![]() |
Ediciones Graficas Rey | Place of Publication | Editor | Joost Van de Weijer;Andrew Bagdanov | |
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-84-121011-9-5 | Medium | ||
Area | Expedition | Conference | |||
Notes | LAMP; 600.120 | Approved | no | ||
Call Number | Admin @ si @ Mas20 | Serial | 3481 | ||
Permanent link to this record | |||||
Author | Lei Kang | ||||
Title | Robust Handwritten Text Recognition in Scarce Labeling Scenarios: Disentanglement, Adaptation and Generation | Type | Book Whole | ||
Year | 2020 | Publication | PhD Thesis, Universitat Autonoma de Barcelona-CVC | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | |||||
Abstract | Handwritten documents are not only preserved in historical archives but also widely used in administrative documents such as cheques and claims. With the rise of the deep learning era, many state-of-the-art approaches have achieved good performance on specific datasets for Handwritten Text Recognition (HTR). However, it is still challenging to solve real use cases because of the varied handwriting styles across different writers and the limited labeled data. Thus, both explorin a more robust handwriting recognition architectures and proposing methods to diminish the gap between the source and target data in an unsupervised way are
demanded. In this thesis, firstly, we explore novel architectures for HTR, from Sequence-to-Sequence (Seq2Seq) method with attention mechanism to non-recurrent Transformer-based method. Secondly, we focus on diminishing the performance gap between source and target data in an unsupervised way. Finally, we propose a group of generative methods for handwritten text images, which could be utilized to increase the training set to obtain a more robust recognizer. In addition, by simply modifying the generative method and joining it with a recognizer, we end up with an effective disentanglement method to distill textual content from handwriting styles so as to achieve a generalized recognition performance. We outperform state-of-the-art HTR performances in the experimental results among different scientific and industrial datasets, which prove the effectiveness of the proposed methods. To the best of our knowledge, the non-recurrent recognizer and the disentanglement method are the first contributions in the handwriting recognition field. Furthermore, we have outlined the potential research lines, which would be interesting to explore in the future. |
||||
Address | |||||
Corporate Author | Thesis | Ph.D. thesis | |||
Publisher ![]() |
Ediciones Graficas Rey | Place of Publication | Editor | Alicia Fornes;Marçal Rusiñol;Mauricio Villegas | |
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-84-122714-0-9 | Medium | ||
Area | Expedition | Conference | |||
Notes | DAG; 600.121 | Approved | no | ||
Call Number | Admin @ si @ Kan20 | Serial | 3482 | ||
Permanent link to this record | |||||
Author | Manuel Carbonell | ||||
Title | Neural Information Extraction from Semi-structured Documents A | Type | Book Whole | ||
Year | 2020 | Publication | PhD Thesis, Universitat Autonoma de Barcelona-CVC | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | |||||
Abstract | Sectors as fintech, legaltech or insurance process an inflow of millions of forms, invoices, id documents, claims or similar every day. Together with these, historical archives provide gigantic amounts of digitized documents containing useful information that needs to be stored in machine encoded text with a meaningful structure. This procedure, known as information extraction (IE) comprises the steps of localizing and recognizing text, identifying named entities contained in it and optionally finding relationships among its elements. In this work we explore multi-task neural models at image and graph level to solve all steps in a unified way. While doing so we find benefits and limitations of these end-to-end approaches in comparison with sequential separate methods. More specifically, we first propose a method to produce textual as well as semantic labels with a unified model from handwritten text line images. We do so with the use of a convolutional recurrent neural model trained with connectionist temporal classification to predict the textual as well as semantic information encoded in the images. Secondly, motivated by the success of this approach we investigate the unification of the localization and recognition tasks of handwritten text in full pages with an end-to-end model, observing benefits in doing so. Having two models that tackle information extraction subsequent task pairs in an end-to-end to end manner, we lastly contribute with a method to put them all together in a single neural network to solve the whole information extraction pipeline in a unified way. Doing so we observe some benefits and some limitations in the approach, suggesting that in certain cases it is beneficial to train specialized models that excel at a single challenging task of the information extraction process, as it can be the recognition of named entities or the extraction of relationships between them. For this reason we lastly study the use of the recently arrived graph neural network architectures for the semantic tasks of the information extraction process, which are recognition of named entities and relation extraction, achieving promising results on the relation extraction part. | ||||
Address | |||||
Corporate Author | Thesis | Ph.D. thesis | |||
Publisher ![]() |
Ediciones Graficas Rey | Place of Publication | Editor | Alicia Fornes;Mauricio Villegas;Josep Llados | |
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-84-122714-1-6 | Medium | ||
Area | Expedition | Conference | |||
Notes | DAG; 600.121 | Approved | no | ||
Call Number | Admin @ si @ Car20 | Serial | 3483 | ||
Permanent link to this record | |||||
Author | Gemma Rotger | ||||
Title | Lifelike Humans: Detailed Reconstruction of Expressive Human Faces | Type | Book Whole | ||
Year | 2021 | Publication | PhD Thesis, Universitat Autonoma de Barcelona-CVC | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | |||||
Abstract | Developing human-like digital characters is a challenging task since humans are used to recognizing our fellows, and find the computed generated characters inadequately humanized. To fulfill the standards of the videogame and digital film productions it is necessary to model and animate these characters the most closely to human beings. However, it is an arduous and expensive task, since many artists and specialists are required to work on a single character. Therefore, to fulfill these requirements we found an interesting option to study the automatic creation of detailed characters through inexpensive setups. In this work, we develop novel techniques to bring detailed characters by combining different aspects that stand out when developing realistic characters, skin detail, facial hairs, expressions, and microexpressions. We examine each of the mentioned areas with the aim of automatically recover each of the parts without user interaction nor training data. We study the problems for their robustness but also for the simplicity of the setup, preferring single-image with uncontrolled illumination and methods that can be easily computed with the commodity of a standard laptop. A detailed face with wrinkles and skin details is vital to develop a realistic character. In this work, we introduce our method to automatically describe facial wrinkles on the image and transfer to the recovered base face. Then we advance to facial hair recovery by resolving a fitting problem with a novel parametrization model. As of last, we develop a mapping function that allows transfer expressions and microexpressions between different meshes, which provides realistic animations to our detailed mesh. We cover all the mentioned points with the focus on key aspects as (i) how to describe skin wrinkles in a simple and straightforward manner, (ii) how to recover 3D from 2D detections, (iii) how to recover and model facial hair from 2D to 3D, (iv) how to transfer expressions between models holding both skin detail and facial hair, (v) how to perform all the described actions without training data nor user interaction. In this work, we present our proposals to solve these aspects with an efficient and simple setup. We validate our work with several datasets both synthetic and real data, prooving remarkable results even in challenging cases as occlusions as glasses, thick beards, and indeed working with different face topologies like single-eyed cyclops. | ||||
Address | |||||
Corporate Author | Thesis | Ph.D. thesis | |||
Publisher ![]() |
Ediciones Graficas Rey | Place of Publication | Editor | Felipe Lumbreras;Antonio Agudo | |
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-84-122714-3-0 | Medium | ||
Area | Expedition | Conference | |||
Notes | ADAS | Approved | no | ||
Call Number | Admin @ si @ Rot2021 | Serial | 3513 | ||
Permanent link to this record | |||||
Author | M.J. Yzuel; J. Pladellorens; Joan Serrat; A. Dupuy | ||||
Title | Application restauration and edge detection techniques in the calculation of left ventricular volumes. | Type | Conference Article | ||
Year | 1993 | Publication | Optics in Medicine, Biology and Environmental Research : Selected contributions to the first International Conference on Optics within Life Sciences (OWLS I) | Abbreviated Journal | |
Volume | Issue | Pages | 374-375 | ||
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
Elsevier | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | ADAS | Approved | no | ||
Call Number | ADAS @ adas @ YPS1993 | Serial | 244 | ||
Permanent link to this record | |||||
Author | T. Widemann; Xavier Otazu | ||||
Title | Titanias radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation | Type | Journal Article | ||
Year | 2009 | Publication | International Journal of Solar System Studies | Abbreviated Journal | |
Volume | 199 | Issue | 2 | Pages | 458–476 |
Keywords | Occultations; Uranus, satellites; Satellites, shapes; Satellites, dynamics; Ices; Satellites, atmospheres | ||||
Abstract | On September 8, 2001 around 2 h UT, the largest uranian moon, Titania, occulted Hipparcos star 106829 (alias SAO 164538, a V=7.2, K0 III star). This was the first-ever observed occultation by this satellite, a rare event as Titania subtends only 0.11 arcsec on the sky. The star's unusual brightness allowed many observers, both amateurs or professionals, to monitor this unique event, providing fifty-seven occultations chords over three continents, all reported here. Selecting the best 27 occultation chords, and assuming a circular limb, we derive Titania's radius: View the MathML source (1-σ error bar). This implies a density of View the MathML source using the value View the MathML source derived by Taylor [Taylor, D.B., 1998. Astron. Astrophys. 330, 362–374]. We do not detect any significant difference between equatorial and polar radii, in the limit View the MathML source, in agreement with Voyager limb image retrieval during the 1986 flyby. Titania's offset with respect to the DE405 + URA027 (based on GUST86 theory) ephemeris is derived: ΔαTcos(δT)=−108±13 mas and ΔδT=−62±7 mas (ICRF J2000.0 system). Most of this offset is attributable to a Uranus' barycentric offset with respect to DE405, that we estimate to be: View the MathML source and ΔδU=−85±25 mas at the moment of occultation. This offset is confirmed by another Titania stellar occultation observed on August 1st, 2003, which provides an offset of ΔαTcos(δT)=−127±20 mas and ΔδT=−97±13 mas for the satellite. The combined ingress and egress data do not show any significant hint for atmospheric refraction, allowing us to set surface pressure limits at the level of 10–20 nbar. More specifically, we find an upper limit of 13 nbar (1-σ level) at 70 K and 17 nbar at 80 K, for a putative isothermal CO2 atmosphere. We also provide an upper limit of 8 nbar for a possible CH4 atmosphere, and 22 nbar for pure N2, again at the 1-σ level. We finally constrain the stellar size using the time-resolved star disappearance and reappearance at ingress and egress. We find an angular diameter of 0.54±0.03 mas (corresponding to View the MathML source projected at Titania). With a distance of 170±25 parsecs, this corresponds to a radius of 9.8±0.2 solar radii for HIP 106829, typical of a K0 III giant. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
ELSEVIER | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0019-1035 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | CIC | Approved | no | ||
Call Number | CAT @ cat @ Wid2009 | Serial | 1052 | ||
Permanent link to this record | |||||
Author | Jose Antonio Rodriguez; Florent Perronnin | ||||
Title | Handwritten word-spotting using hidden Markov models and universal vocabularies | Type | Journal Article | ||
Year | 2009 | Publication | Pattern Recognition | Abbreviated Journal | PR |
Volume | 42 | Issue | 9 | Pages | 2103-2116 |
Keywords | Word-spotting; Hidden Markov model; Score normalization; Universal vocabulary; Handwriting recognition | ||||
Abstract | Handwritten word-spotting is traditionally viewed as an image matching task between one or multiple query word-images and a set of candidate word-images in a database. This is a typical instance of the query-by-example paradigm. In this article, we introduce a statistical framework for the word-spotting problem which employs hidden Markov models (HMMs) to model keywords and a Gaussian mixture model (GMM) for score normalization. We explore the use of two types of HMMs for the word modeling part: continuous HMMs (C-HMMs) and semi-continuous HMMs (SC-HMMs), i.e. HMMs with a shared set of Gaussians. We show on a challenging multi-writer corpus that the proposed statistical framework is always superior to a traditional matching system which uses dynamic time warping (DTW) for word-image distance computation. A very important finding is that the SC-HMM is superior when labeled training data is scarce—as low as one sample per keyword—thanks to the prior information which can be incorporated in the shared set of Gaussians. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
Elsevier | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0031-3203 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Admin @ si @ RoP2009 | Serial | 1053 | ||
Permanent link to this record | |||||
Author | Marçal Rusiñol; Agnes Borras; Josep Llados | ||||
Title | Relational Indexing of Vectorial Primitives for Symbol Spotting in Line-Drawing Images | Type | Journal Article | ||
Year | 2010 | Publication | Pattern Recognition Letters | Abbreviated Journal | PRL |
Volume | 31 | Issue | 3 | Pages | 188–201 |
Keywords | Document image analysis and recognition, Graphics recognition, Symbol spotting ,Vectorial representations, Line-drawings | ||||
Abstract | This paper presents a symbol spotting approach for indexing by content a database of line-drawing images. As line-drawings are digital-born documents designed by vectorial softwares, instead of using a pixel-based approach, we present a spotting method based on vector primitives. Graphical symbols are represented by a set of vectorial primitives which are described by an off-the-shelf shape descriptor. A relational indexing strategy aims to retrieve symbol locations into the target documents by using a combined numerical-relational description of 2D structures. The zones which are likely to contain the queried symbol are validated by a Hough-like voting scheme. In addition, a performance evaluation framework for symbol spotting in graphical documents is proposed. The presented methodology has been evaluated with a benchmarking set of architectural documents achieving good performance results. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
Elsevier | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | DAG | Approved | no | ||
Call Number | DAG @ dag @ RBL2010 | Serial | 1177 | ||
Permanent link to this record | |||||
Author | Bogdan Raducanu; Jordi Vitria; Ales Leonardis | ||||
Title | Online pattern recognition and machine learning techniques for computer-vision: Theory and applications | Type | Journal Article | ||
Year | 2010 | Publication | Image and Vision Computing | Abbreviated Journal | IMAVIS |
Volume | 28 | Issue | 7 | Pages | 1063–1064 |
Keywords | |||||
Abstract | (Editorial for the Special Issue on Online pattern recognition and machine learning techniques)
In real life, visual learning is supposed to be a continuous process. This paradigm has found its way also in artificial vision systems. There is an increasing trend in pattern recognition represented by online learning approaches, which aims at continuously updating the data representation when new information arrives. Starting with a minimal dataset, the initial knowledge is expanded by incorporating incoming instances, which may have not been previously available or foreseen at the system’s design stage. An interesting characteristic of this strategy is that the train and test phases take place simultaneously. Given the increasing interest in this subject, the aim of this special issue is to be a landmark event in the development of online learning techniques and their applications with the hope that it will capture the interest of a wider audience and will attract even more researchers. We received 19 contributions, of which 9 have been accepted for publication, after having been subjected to usual peer review process. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
Elsevier | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0262-8856 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | OR;MV | Approved | no | ||
Call Number | BCNPCL @ bcnpcl @ RVL2010 | Serial | 1280 | ||
Permanent link to this record | |||||
Author | Jose Antonio Rodriguez; Florent Perronnin; Gemma Sanchez; Josep Llados | ||||
Title | Unsupervised writer adaptation of whole-word HMMs with application to word-spotting | Type | Journal Article | ||
Year | 2010 | Publication | Pattern Recognition Letters | Abbreviated Journal | PRL |
Volume | 31 | Issue | 8 | Pages | 742–749 |
Keywords | Word-spotting; Handwriting recognition; Writer adaptation; Hidden Markov model; Document analysis | ||||
Abstract | In this paper we propose a novel approach for writer adaptation in a handwritten word-spotting task. The method exploits the fact that the semi-continuous hidden Markov model separates the word model parameters into (i) a codebook of shapes and (ii) a set of word-specific parameters.
Our main contribution is to employ this property to derive writer-specific word models by statistically adapting an initial universal codebook to each document. This process is unsupervised and does not even require the appearance of the keyword(s) in the searched document. Experimental results show an increase in performance when this adaptation technique is applied. To the best of our knowledge, this is the first work dealing with adaptation for word-spotting. The preliminary version of this paper obtained an IBM Best Student Paper Award at the 19th International Conference on Pattern Recognition. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
Elsevier | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | DAG | Approved | no | ||
Call Number | DAG @ dag @ RPS2010 | Serial | 1290 | ||
Permanent link to this record | |||||
Author | Miquel Ferrer; Ernest Valveny; F. Serratosa; K. Riesen; Horst Bunke | ||||
Title | Generalized Median Graph Computation by Means of Graph Embedding in Vector Spaces | Type | Journal Article | ||
Year | 2010 | Publication | Pattern Recognition | Abbreviated Journal | PR |
Volume | 43 | Issue | 4 | Pages | 1642–1655 |
Keywords | Graph matching; Weighted mean of graphs; Median graph; Graph embedding; Vector spaces | ||||
Abstract | The median graph has been presented as a useful tool to represent a set of graphs. Nevertheless its computation is very complex and the existing algorithms are restricted to use limited amount of data. In this paper we propose a new approach for the computation of the median graph based on graph embedding. Graphs are embedded into a vector space and the median is computed in the vector domain. We have designed a procedure based on the weighted mean of a pair of graphs to go from the vector domain back to the graph domain in order to obtain a final approximation of the median graph. Experiments on three different databases containing large graphs show that we succeed to compute good approximations of the median graph. We have also applied the median graph to perform some basic classification tasks achieving reasonable good results. These experiments on real data open the door to the application of the median graph to a number of more complex machine learning algorithms where a representative of a set of graphs is needed. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
Elsevier | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | DAG | Approved | no | ||
Call Number | DAG @ dag @ FVS2010 | Serial | 1294 | ||
Permanent link to this record | |||||
Author | Joan Mas; Josep Llados; Gemma Sanchez; J.A. Jorge | ||||
Title | A syntactic approach based on distortion-tolerant Adjacency Grammars and a spatial-directed parser to interpret sketched diagrams | Type | Journal Article | ||
Year | 2010 | Publication | Pattern Recognition | Abbreviated Journal | PR |
Volume | 43 | Issue | 12 | Pages | 4148–4164 |
Keywords | Syntactic Pattern Recognition; Symbol recognition; Diagram understanding; Sketched diagrams; Adjacency Grammars; Incremental parsing; Spatial directed parsing | ||||
Abstract | This paper presents a syntactic approach based on Adjacency Grammars (AG) for sketch diagram modeling and understanding. Diagrams are a combination of graphical symbols arranged according to a set of spatial rules defined by a visual language. AG describe visual shapes by productions defined in terms of terminal and non-terminal symbols (graphical primitives and subshapes), and a set functions describing the spatial arrangements between symbols. Our approach to sketch diagram understanding provides three main contributions. First, since AG are linear grammars, there is a need to define shapes and relations inherently bidimensional using a sequential formalism. Second, our parsing approach uses an indexing structure based on a spatial tessellation. This serves to reduce the search space when finding candidates to produce a valid reduction. This allows order-free parsing of 2D visual sentences while keeping combinatorial explosion in check. Third, working with sketches requires a distortion model to cope with the natural variations of hand drawn strokes. To this end we extended the basic grammar with a distortion measure modeled on the allowable variation on spatial constraints associated with grammar productions. Finally, the paper reports on an experimental framework an interactive system for sketch analysis. User tests performed on two real scenarios show that our approach is usable in interactive settings. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
Elsevier | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | DAG | Approved | no | ||
Call Number | DAG @ dag @ MLS2010 | Serial | 1336 | ||
Permanent link to this record | |||||
Author | Umapada Pal; Partha Pratim Roy; N. Tripathya; Josep Llados | ||||
Title | Multi-oriented Bangla and Devnagari text recognition | Type | Journal Article | ||
Year | 2010 | Publication | Pattern Recognition | Abbreviated Journal | PR |
Volume | 43 | Issue | 12 | Pages | 4124–4136 |
Keywords | |||||
Abstract | There are printed complex documents where text lines of a single page may have different orientations or the text lines may be curved in shape. As a result, it is difficult to detect the skew of such documents and hence character segmentation and recognition of such documents are a complex task. In this paper, using background and foreground information we propose a novel scheme towards the recognition of Indian complex documents of Bangla and Devnagari script. In Bangla and Devnagari documents usually characters in a word touch and they form cavity regions. To take care of these cavity regions, background information of such documents is used. Convex hull and water reservoir principle have been applied for this purpose. Here, at first, the characters are segmented from the documents using the background information of the text. Next, individual characters are recognized using rotation invariant features obtained from the foreground part of the characters.
For character segmentation, at first, writing mode of a touching component (word) is detected using water reservoir principle based features. Next, depending on writing mode and the reservoir base-region of the touching component, a set of candidate envelope points is then selected from the contour points of the component. Based on these candidate points, the touching component is finally segmented into individual characters. For recognition of multi-sized/multi-oriented characters the features are computed from different angular information obtained from the external and internal contour pixels of the characters. These angular information are computed in such a way that they do not depend on the size and rotation of the characters. Circular and convex hull rings have been used to divide a character into smaller zones to get zone-wise features for higher recognition results. We combine circular and convex hull features to improve the results and these features are fed to support vector machines (SVM) for recognition. From our experiment we obtained recognition results of 99.18% (98.86%) accuracy when tested on 7515 (7874) Devnagari (Bangla) characters. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
Elsevier | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | DAG | Approved | no | ||
Call Number | DAG @ dag @ PRT2010 | Serial | 1337 | ||
Permanent link to this record | |||||
Author | Sergio Escalera; Oriol Pujol; Petia Radeva | ||||
Title | Re-coding ECOCs without retraining | Type | Journal Article | ||
Year | 2010 | Publication | Pattern Recognition Letters | Abbreviated Journal | PRL |
Volume | 31 | Issue | 7 | Pages | 555–562 |
Keywords | |||||
Abstract | A standard way to deal with multi-class categorization problems is by the combination of binary classifiers in a pairwise voting procedure. Recently, this classical approach has been formalized in the Error-Correcting Output Codes (ECOC) framework. In the ECOC framework, the one-versus-one coding demonstrates to achieve higher performance than the rest of coding designs. The binary problems that we train in the one-versus-one strategy are significantly smaller than in the rest of designs, and usually easier to be learnt, taking into account the smaller overlapping between classes. However, a high percentage of the positions coded by zero of the coding matrix, which implies a high sparseness degree, does not codify meta-class membership information. In this paper, we show that using the training data we can redefine without re-training, in a problem-dependent way, the one-versus-one coding matrix so that the new coded information helps the system to increase its generalization capability. Moreover, the new re-coding strategy is generalized to be applied over any binary code. The results over several UCI Machine Learning repository data sets and two real multi-class problems show that performance improvements can be obtained re-coding the classical one-versus-one and Sparse random designs compared to different state-of-the-art ECOC configurations. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher ![]() |
Elsevier | Place of Publication | Editor | ||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | MILAB;HUPBA | Approved | no | ||
Call Number | BCNPCL @ bcnpcl @ EPR2010e | Serial | 1338 | ||
Permanent link to this record |