|   | 
Details
   web
Records
Author Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil
Title Mental Workload Detection Based on EEG Analysis Type Conference Article
Year 2021 Publication (down) Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. Abbreviated Journal
Volume 339 Issue Pages 268-277
Keywords Cognitive states; Mental workload; EEG analysis; Neural Networks.
Abstract The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
Address Virtual; October 20-22 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CCIA
Notes IAM; 600.139; 600.118; 600.145 Approved no
Call Number Admin @ si @ Serial 3723
Permanent link to this record
 

 
Author Sonia Baeza; R.Domingo; M.Salcedo; G.Moragas; J.Deportos; I.Garcia Olive; Carles Sanchez; Debora Gil; Antoni Rosell
Title Artificial Intelligence to Optimize Pulmonary Embolism Diagnosis During Covid-19 Pandemic by Perfusion SPECT/CT, a Pilot Study Type Journal Article
Year 2021 Publication (down) American Journal of Respiratory and Critical Care Medicine Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.145 Approved no
Call Number Admin @ si @ BDS2021 Serial 3591
Permanent link to this record
 

 
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type Journal Article
Year 2021 Publication (down) ACM Transactions on Graphics Abbreviated Journal
Volume 40 Issue 6 Pages 1-14
Keywords
Abstract We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021c Serial 3643
Permanent link to this record
 

 
Author Jialuo Chen; Mohamed Ali Souibgui; Alicia Fornes; Beata Megyesi
Title Unsupervised Alphabet Matching in Historical Encrypted Manuscript Images Type Conference Article
Year 2021 Publication (down) 4th International Conference on Historical Cryptology Abbreviated Journal
Volume Issue Pages 34-37
Keywords
Abstract Historical ciphers contain a wide range ofsymbols from various symbol sets. Iden-tifying the cipher alphabet is a prerequi-site before decryption can take place andis a time-consuming process. In this workwe explore the use of image processing foridentifying the underlying alphabet in ci-pher images, and to compare alphabets be-tween ciphers. The experiments show thatciphers with similar alphabets can be suc-cessfully discovered through clustering.
Address Virtual; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference HistoCrypt
Notes DAG; 602.230; 600.140; 600.121 Approved no
Call Number Admin @ si @ CSF2021 Serial 3617
Permanent link to this record
 

 
Author Bartlomiej Twardowski; Pawel Zawistowski; Szymon Zaborowski
Title Metric Learning for Session-Based Recommendations Type Conference Article
Year 2021 Publication (down) 43rd edition of the annual BCS-IRSG European Conference on Information Retrieval Abbreviated Journal
Volume 12656 Issue Pages 650-665
Keywords Session-based recommendations; Deep metric learning; Learning to rank
Abstract Session-based recommenders, used for making predictions out of users’ uninterrupted sequences of actions, are attractive for many applications. Here, for this task we propose using metric learning, where a common embedding space for sessions and items is created, and distance measures dissimilarity between the provided sequence of users’ events and the next action. We discuss and compare metric learning approaches to commonly used learning-to-rank methods, where some synergies exist. We propose a simple architecture for problem analysis and demonstrate that neither extensively big nor deep architectures are necessary in order to outperform existing methods. The experimental results against strong baselines on four datasets are provided with an ablation study.
Address Virtual; March 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECIR
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ TZZ2021 Serial 3586
Permanent link to this record
 

 
Author Josep Llados
Title The 5G of Document Intelligence Type Conference Article
Year 2021 Publication (down) 3rd Workshop on Future of Document Analysis and Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FDAR
Notes DAG Approved no
Call Number Admin @ si @ Serial 3677
Permanent link to this record
 

 
Author Ahmed M. A. Salih; Ilaria Boscolo Galazzo; Zahra Zahra Raisi-Estabragh; Steffen E. Petersen; Polyxeni Gkontra; Karim Lekadir; Gloria Menegaz; Petia Radeva
Title A new scheme for the assessment of the robustness of Explainable Methods Applied to Brain Age estimation Type Conference Article
Year 2021 Publication (down) 34th International Symposium on Computer-Based Medical Systems Abbreviated Journal
Volume Issue Pages 492-497
Keywords
Abstract Deep learning methods show great promise in a range of settings including the biomedical field. Explainability of these models is important in these fields for building end-user trust and to facilitate their confident deployment. Although several Machine Learning Interpretability tools have been proposed so far, there is currently no recognized evaluation standard to transfer the explainability results into a quantitative score. Several measures have been proposed as proxies for quantitative assessment of explainability methods. However, the robustness of the list of significant features provided by the explainability methods has not been addressed. In this work, we propose a new proxy for assessing the robustness of the list of significant features provided by two explainability methods. Our validation is defined at functionality-grounded level based on the ranked correlation statistical index and demonstrates its successful application in the framework of brain aging estimation. We assessed our proxy to estimate brain age using neuroscience data. Our results indicate small variability and high robustness in the considered explainability methods using this new proxy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CBMS
Notes MILAB; no proj Approved no
Call Number Admin @ si @ SBZ2021 Serial 3629
Permanent link to this record
 

 
Author Vincenzo Lomonaco; Lorenzo Pellegrini; Andrea Cossu; Antonio Carta; Gabriele Graffieti; Tyler L. Hayes; Matthias De Lange; Marc Masana; Jary Pomponi; Gido van de Ven; Martin Mundt; Qi She; Keiland Cooper; Jeremy Forest; Eden Belouadah; Simone Calderara; German I. Parisi; Fabio Cuzzolin; Andreas Tolias; Simone Scardapane; Luca Antiga; Subutai Amhad; Adrian Popescu; Christopher Kanan; Joost Van de Weijer; Tinne Tuytelaars; Davide Bacciu; Davide Maltoni
Title Avalanche: an End-to-End Library for Continual Learning Type Conference Article
Year 2021 Publication (down) 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 3595-3605
Keywords
Abstract Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ LPC2021 Serial 3567
Permanent link to this record
 

 
Author Marc Masana; Tinne Tuytelaars; Joost Van de Weijer
Title Ternary Feature Masks: zero-forgetting for task-incremental learning Type Conference Article
Year 2021 Publication (down) 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 3565-3574
Keywords
Abstract We propose an approach without any forgetting to continual learning for the task-aware regime, where at inference the task-label is known. By using ternary masks we can upgrade a model to new tasks, reusing knowledge from previous tasks while not forgetting anything about them. Using masks prevents both catastrophic forgetting and backward transfer. We argue -- and show experimentally -- that avoiding the former largely compensates for the lack of the latter, which is rarely observed in practice. In contrast to earlier works, our masks are applied to the features (activations) of each layer instead of the weights. This considerably reduces the number of mask parameters for each new task; with more than three orders of magnitude for most networks. The encoding of the ternary masks into two bits per feature creates very little overhead to the network, avoiding scalability issues. To allow already learned features to adapt to the current task without changing the behavior of these features for previous tasks, we introduce task-specific feature normalization. Extensive experiments on several finegrained datasets and ImageNet show that our method outperforms current state-of-the-art while reducing memory overhead in comparison to weight-based approaches.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ MTW2021 Serial 3565
Permanent link to this record
 

 
Author Fei Yang; Luis Herranz; Yongmei Cheng; Mikhail Mozerov
Title Slimmable compressive autoencoders for practical neural image compression Type Conference Article
Year 2021 Publication (down) 34th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 4996-5005
Keywords
Abstract Neural image compression leverages deep neural networks to outperform traditional image codecs in rate-distortion performance. However, the resulting models are also heavy, computationally demanding and generally optimized for a single rate, limiting their practical use. Focusing on practical image compression, we propose slimmable compressive autoencoders (SlimCAEs), where rate (R) and distortion (D) are jointly optimized for different capacities. Once trained, encoders and decoders can be executed at different capacities, leading to different rates and complexities. We show that a successful implementation of SlimCAEs requires suitable capacity-specific RD tradeoffs. Our experiments show that SlimCAEs are highly flexible models that provide excellent rate-distortion performance, variable rate, and dynamic adjustment of memory, computational cost and latency, thus addressing the main requirements of practical image compression.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ YHC2021 Serial 3569
Permanent link to this record
 

 
Author Trevor Canham; Javier Vazquez; D Long; Richard F. Murray; Michael S Brown
Title Noise Prism: A Novel Multispectral Visualization Technique Type Journal Article
Year 2021 Publication (down) 31st Color and Imaging Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract A novel technique for visualizing multispectral images is proposed. Inspired by how prisms work, our method spreads spectral information over a chromatic noise pattern. This is accomplished by populating the pattern with pixels representing each measurement band at a count proportional to its measured intensity. The method is advantageous because it allows for lightweight encoding and visualization of spectral information
while maintaining the color appearance of the stimulus. A four alternative forced choice (4AFC) experiment was conducted to validate the method’s information-carrying capacity in displaying metameric stimuli of varying colors and spectral basis functions. The scores ranged from 100% to 20% (less than chance given the 4AFC task), with many conditions falling somewhere in between at statistically significant intervals. Using this data, color and texture difference metrics can be evaluated and optimized to predict the legibility of the visualization technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes MACO; CIC Approved no
Call Number Admin @ si @ CVL2021 Serial 4000
Permanent link to this record
 

 
Author Kai Wang; Luis Herranz; Joost Van de Weijer
Title Continual learning in cross-modal retrieval Type Conference Article
Year 2021 Publication (down) 2nd CLVISION workshop Abbreviated Journal
Volume Issue Pages 3628-3638
Keywords
Abstract Multimodal representations and continual learning are two areas closely related to human intelligence. The former considers the learning of shared representation spaces where information from different modalities can be compared and integrated (we focus on cross-modal retrieval between language and visual representations). The latter studies how to prevent forgetting a previously learned task when learning a new one. While humans excel in these two aspects, deep neural networks are still quite limited. In this paper, we propose a combination of both problems into a continual cross-modal retrieval setting, where we study how the catastrophic interference caused by new tasks impacts the embedding spaces and their cross-modal alignment required for effective retrieval. We propose a general framework that decouples the training, indexing and querying stages. We also identify and study different factors that may lead to forgetting, and propose tools to alleviate it. We found that the indexing stage pays an important role and that simply avoiding reindexing the database with updated embedding networks can lead to significant gains. We evaluated our methods in two image-text retrieval datasets, obtaining significant gains with respect to the fine tuning baseline.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.120; 600.141; 600.147; 601.379 Approved no
Call Number Admin @ si @ WHW2021 Serial 3566
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Fufu Fang
Title The Discrete Cosine Maximum Ignorance Assumption Type Conference Article
Year 2021 Publication (down) 29th Color and Imaging Conference Abbreviated Journal
Volume Issue Pages 13-18
Keywords
Abstract the performance of colour correction algorithms are dependent on the reflectance sets used. Sometimes, when the testing reflectance set is changed the ranking of colour correction algorithms also changes. To remove dependence on dataset we can
make assumptions about the set of all possible reflectances. In the Maximum Ignorance with Positivity (MIP) assumption we assume that all reflectances with per wavelength values between 0 and 1 are equally likely. A weakness in the MIP is that it fails to take into account the correlation of reflectance functions between
wavelengths (many of the assumed reflectances are, in reality, not possible).
In this paper, we take the view that the maximum ignorance assumption has merit but, hitherto it has been calculated with respect to the wrong coordinate basis. Here, we propose the Discrete Cosine Maximum Ignorance assumption (DCMI), where
all reflectances that have coordinates between max and min bounds in the Discrete Cosine Basis coordinate system are equally likely.
Here, the correlation between wavelengths is encoded and this results in the set of all plausible reflectances ’looking like’ typical reflectances that occur in nature. This said the DCMI model is also a superset of all measured reflectance sets.
Experiments show that, in colour correction, adopting the DCMI results in similar colour correction performance as using a particular reflectance set.
Address Virtual; November 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes CIC Approved no
Call Number FVF2021 Serial 3596
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title Cycle Generative Adversarial Network: Towards A Low-Cost Vegetation Index Estimation Type Conference Article
Year 2021 Publication (down) 28th IEEE International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 19-22
Keywords
Abstract This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI). The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
Address Anchorage-Alaska; USA; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes MSIAU; 600.130; 600.122; 601.349 Approved no
Call Number Admin @ si @ SSV2021b Serial 3579
Permanent link to this record
 

 
Author Joan Codina-Filba; Sergio Escalera; Joan Escudero; Coen Antens; Pau Buch-Cardona; Mireia Farrus
Title Mobile eHealth Platform for Home Monitoring of Bipolar Disorder Type Conference Article
Year 2021 Publication (down) 27th ACM International Conference on Multimedia Modeling Abbreviated Journal
Volume 12573 Issue Pages 330-341
Keywords
Abstract People suffering Bipolar Disorder (BD) experiment changes in mood status having depressive or manic episodes with normal periods in the middle. BD is a chronic disease with a high level of non-adherence to medication that needs a continuous monitoring of patients to detect when they relapse in an episode, so that physicians can take care of them. Here we present MoodRecord, an easy-to-use, non-intrusive, multilingual, robust and scalable platform suitable for home monitoring patients with BD, that allows physicians and relatives to track the patient state and get alarms when abnormalities occur.

MoodRecord takes advantage of the capabilities of smartphones as a communication and recording device to do a continuous monitoring of patients. It automatically records user activity, and asks the user to answer some questions or to record himself in video, according to a predefined plan designed by physicians. The video is analysed, recognising the mood status from images and bipolar assessment scores are extracted from speech parameters. The data obtained from the different sources are merged periodically to observe if a relapse may start and if so, raise the corresponding alarm. The application got a positive evaluation in a pilot with users from three different countries. During the pilot, the predictions of the voice and image modules showed a coherent correlation with the diagnosis performed by clinicians.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MMM
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ CEE2021 Serial 3659
Permanent link to this record