|   | 
Details
   web
Records
Author Noha Elfiky; Theo Gevers; Arjan Gijsenij; Jordi Gonzalez
Title Color Constancy using 3D Scene Geometry derived from a Single Image Type Journal Article
Year 2014 Publication (down) IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 23 Issue 9 Pages 3855-3868
Keywords
Abstract The aim of color constancy is to remove the effect of the color of the light source. As color constancy is inherently an ill-posed problem, most of the existing color constancy algorithms are based on specific imaging assumptions (e.g. grey-world and white patch assumption).
In this paper, 3D geometry models are used to determine which color constancy method to use for the different geometrical regions (depth/layer) found
in images. The aim is to classify images into stages (rough 3D geometry models). According to stage models; images are divided into stage regions using hard and soft segmentation. After that, the best color constancy methods is selected for each geometry depth. To this end, we propose a method to combine color constancy algorithms by investigating the relation between depth, local image statistics and color constancy. Image statistics are then exploited per depth to select the proper color constancy method. Our approach opens the possibility to estimate multiple illuminations by distinguishing
nearby light source from distant illuminations. Experiments on state-of-the-art data sets show that the proposed algorithm outperforms state-of-the-art
single color constancy algorithms with an improvement of almost 50% of median angular error. When using a perfect classifier (i.e, all of the test images are correctly classified into stages); the performance of the proposed method achieves an improvement of 52% of the median angular error compared to the best-performing single color constancy algorithm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ISE; 600.078 Approved no
Call Number Admin @ si @ EGG2014 Serial 2528
Permanent link to this record
 

 
Author Josep Llados; Marçal Rusiñol
Title Graphics Recognition Techniques Type Book Chapter
Year 2014 Publication (down) Handbook of Document Image Processing and Recognition Abbreviated Journal
Volume D Issue Pages 489-521
Keywords Dimension recognition; Graphics recognition; Graphic-rich documents; Polygonal approximation; Raster-to-vector conversion; Texture-based primitive extraction; Text-graphics separation
Abstract This chapter describes the most relevant approaches for the analysis of graphical documents. The graphics recognition pipeline can be splitted into three tasks. The low level or lexical task extracts the basic units composing the document. The syntactic level is focused on the structure, i.e., how graphical entities are constructed, and involves the location and classification of the symbols present in the document. The third level is a functional or semantic level, i.e., it models what the graphical symbols do and what they mean in the context where they appear. This chapter covers the lexical level, while the next two chapters are devoted to the syntactic and semantic level, respectively. The main problems reviewed in this chapter are raster-to-vector conversion (vectorization algorithms) and the separation of text and graphics components. The research and industrial communities have provided standard methods achieving reasonable performance levels. Hence, graphics recognition techniques can be considered to be in a mature state from a scientific point of view. Additionally this chapter provides insights on some related problems, namely, the extraction and recognition of dimensions in engineering drawings, and the recognition of hatched and tiled patterns. Both problems are usually associated, even integrated, in the vectorization process.
Address
Corporate Author Thesis
Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-85729-858-4 Medium
Area Expedition Conference
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ LlR2014 Serial 2380
Permanent link to this record
 

 
Author Salvatore Tabbone; Oriol Ramos Terrades
Title An Overview of Symbol Recognition Type Book Chapter
Year 2014 Publication (down) Handbook of Document Image Processing and Recognition Abbreviated Journal
Volume D Issue Pages 523-551
Keywords Pattern recognition; Shape descriptors; Structural descriptors; Symbolrecognition; Symbol spotting
Abstract According to the Cambridge Dictionaries Online, a symbol is a sign, shape, or object that is used to represent something else. Symbol recognition is a subfield of general pattern recognition problems that focuses on identifying, detecting, and recognizing symbols in technical drawings, maps, or miscellaneous documents such as logos and musical scores. This chapter aims at providing the reader an overview of the different existing ways of describing and recognizing symbols and how the field has evolved to attain a certain degree of maturity.
Address
Corporate Author Thesis
Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-85729-858-4 Medium
Area Expedition Conference
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ TaT2014 Serial 2489
Permanent link to this record
 

 
Author A.Kesidis; Dimosthenis Karatzas
Title Logo and Trademark Recognition Type Book Chapter
Year 2014 Publication (down) Handbook of Document Image Processing and Recognition Abbreviated Journal
Volume D Issue Pages 591-646
Keywords Logo recognition; Logo removal; Logo spotting; Trademark registration; Trademark retrieval systems
Abstract The importance of logos and trademarks in nowadays society is indisputable, variably seen under a positive light as a valuable service for consumers or a negative one as a catalyst of ever-increasing consumerism. This chapter discusses the technical approaches for enabling machines to work with logos, looking into the latest methodologies for logo detection, localization, representation, recognition, retrieval, and spotting in a variety of media. This analysis is presented in the context of three different applications covering the complete depth and breadth of state of the art techniques. These are trademark retrieval systems, logo recognition in document images, and logo detection and removal in images and videos. This chapter, due to the very nature of logos and trademarks, brings together various facets of document image analysis spanning graphical and textual content, while it links document image analysis to other computer vision domains, especially when it comes to the analysis of real-scene videos and images.
Address
Corporate Author Thesis
Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-85729-858-4 Medium
Area Expedition Conference
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ KeK2014 Serial 2425
Permanent link to this record
 

 
Author Alicia Fornes; Gemma Sanchez
Title Analysis and Recognition of Music Scores Type Book Chapter
Year 2014 Publication (down) Handbook of Document Image Processing and Recognition Abbreviated Journal
Volume E Issue Pages 749-774
Keywords
Abstract The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented.
Address
Corporate Author Thesis
Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-85729-860-7 Medium
Area Expedition Conference
Notes DAG; ADAS; 600.076; 600.077 Approved no
Call Number Admin @ si @ FoS2014 Serial 2484
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal
Title A Product Graph Based Method for Dual Subgraph Matching Applied to Symbol Spotting Type Book Chapter
Year 2014 Publication (down) Graphics Recognition. Current Trends and Challenges Abbreviated Journal
Volume 8746 Issue Pages 7-11
Keywords Product graph; Dual edge graph; Subgraph matching; Random walks; Graph kernel
Abstract Product graph has been shown as a way for matching subgraphs. This paper reports the extension of the product graph methodology for subgraph matching applied to symbol spotting in graphical documents. Here we focus on the two major limitations of the previous version of the algorithm: (1) spurious nodes and edges in the graph representation and (2) inefficient node and edge attributes. To deal with noisy information of vectorized graphical documents, we consider a dual edge graph representation on the original graph representing the graphical information and the product graph is computed between the dual edge graphs of the pattern graph and the target graph. The dual edge graph with redundant edges is helpful for efficient and tolerating encoding of the structural information of the graphical documents. The adjacency matrix of the product graph locates the pair of similar edges of two operand graphs and exponentiating the adjacency matrix finds similar random walks of greater lengths. Nodes joining similar random walks between two graphs are found by combining different weighted exponentials of adjacency matrices. An experimental investigation reveals that the recall obtained by this approach is quite encouraging.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium
Area Expedition Conference
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ DLB2014 Serial 2698
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez
Title Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies Type Book Chapter
Year 2014 Publication (down) Graphics Recognition. Current Trends and Challenges Abbreviated Journal
Volume 8746 Issue Pages 109-121
Keywords Graphics recognition; Floor plan analysis; Object segmentation
Abstract In this paper we present a wall segmentation approach in floor plans that is able to work independently to the graphical notation, does not need any pre-annotated data for learning, and is able to segment multiple-shaped walls such as beams and curved-walls. This method results from the combination of the wall segmentation approaches [3, 5] presented recently by the authors. Firstly, potential straight wall segments are extracted in an unsupervised way similar to [3], but restricting even more the wall candidates considered in the original approach. Then, based on [5], these segments are used to learn the texture pattern of walls and spot the lost instances. The presented combination of both methods has been tested on 4 available datasets with different notations and compared qualitatively and quantitatively to the state-of-the-art applied on these collections. Additionally, some qualitative results on floor plans directly downloaded from the Internet are reported in the paper. The overall performance of the method demonstrates either its adaptability to different wall notations and shapes, and to document qualities and resolutions.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium
Area Expedition Conference
Notes DAG; ADAS; 600.076; 600.077 Approved no
Call Number Admin @ si @ HVS2014 Serial 2535
Permanent link to this record
 

 
Author Lluis Pere de las Heras; David Fernandez; Alicia Fornes; Ernest Valveny; Gemma Sanchez; Josep Llados
Title Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans Type Book Chapter
Year 2014 Publication (down) Graphics Recognition. Current Trends and Challenges Abbreviated Journal
Volume 8746 Issue Pages 135-146
Keywords Graphics recognition; Graphics retrieval; Image classification
Abstract This paper proposes a runlength histogram signature as a perceptual descriptor of architectural plans in a retrieval scenario. The style of an architectural drawing is characterized by the perception of lines, shapes and texture. Such visual stimuli are the basis for defining semantic concepts as space properties, symmetry, density, etc. We propose runlength histograms extracted in vertical, horizontal and diagonal directions as a characterization of line and space properties in floorplans, so it can be roughly associated to a description of walls and room structure. A retrieval application illustrates the performance of the proposed approach, where given a plan as a query, similar ones are obtained from a database. A ground truth based on human observation has been constructed to validate the hypothesis. Additional retrieval results on sketched building’s facades are reported qualitatively in this paper. Its good description and its adaptability to two different sketch drawings despite its simplicity shows the interest of the proposed approach and opens a challenging research line in graphics recognition.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium
Area Expedition Conference
Notes DAG; ADAS; 600.045; 600.056; 600.061; 600.076; 600.077 Approved no
Call Number Admin @ si @ HFF2014 Serial 2536
Permanent link to this record
 

 
Author Alicia Fornes; V.C.Kieu; M. Visani; N.Journet; Anjan Dutta
Title The ICDAR/GREC 2013 Music Scores Competition: Staff Removal Type Book Chapter
Year 2014 Publication (down) Graphics Recognition. Current Trends and Challenges Abbreviated Journal
Volume 8746 Issue Pages 207-220
Keywords Competition; Graphics recognition; Music scores; Writer identification; Staff removal
Abstract The first competition on music scores that was organized at ICDAR and GREC in 2011 awoke the interest of researchers, who participated in both staff removal and writer identification tasks. In this second edition, we focus on the staff removal task and simulate a real case scenario concerning old and degraded music scores. For this purpose, we have generated a new set of semi-synthetic images using two degradation models that we previously introduced: local noise and 3D distortions. In this extended paper we provide an extended description of the dataset, degradation models, evaluation metrics, the participant’s methods and the obtained results that could not be presented at ICDAR and GREC proceedings due to page limitations.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor B.Lamiroy; J.-M. Ogier
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium
Area Expedition Conference
Notes DAG; 600.077; 600.061 Approved no
Call Number Admin @ si @ FKV2014 Serial 2581
Permanent link to this record
 

 
Author Klaus Broelemann; Anjan Dutta; Xiaoyi Jiang; Josep Llados
Title Hierarchical Plausibility-Graphs for Symbol Spotting in Graphical Documents Type Book Chapter
Year 2014 Publication (down) Graphics Recognition. Current Trends and Challenges Abbreviated Journal
Volume 8746 Issue Pages 25-37
Keywords
Abstract Graph representation of graphical documents often suffers from noise such as spurious nodes and edges, and their discontinuity. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance. But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result, the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium
Area Expedition Conference
Notes DAG; 600.045; 600.056; 600.061; 600.077 Approved no
Call Number Admin @ si @ BDJ2014 Serial 2699
Permanent link to this record
 

 
Author Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados
Title Spotting Graphical Symbols in Camera-Acquired Documents in Real Time Type Book Chapter
Year 2014 Publication (down) Graphics Recognition. Current Trends and Challenges Abbreviated Journal
Volume 8746 Issue Pages 3-10
Keywords
Abstract In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium
Area Expedition Conference
Notes DAG; 600.045; 600.055; 600.061; 600.077 Approved no
Call Number Admin @ si @ RKL2014 Serial 2700
Permanent link to this record
 

 
Author Marçal Rusiñol; V. Poulain d'Andecy; Dimosthenis Karatzas; Josep Llados
Title Classification of Administrative Document Images by Logo Identification Type Book Chapter
Year 2014 Publication (down) Graphics Recognition. Current Trends and Challenges Abbreviated Journal
Volume 8746 Issue Pages 49-58
Keywords Administrative Document Classification; Logo Recognition; Logo Spotting
Abstract This paper is focused on the categorization of administrative document images (such as invoices) based on the recognition of the supplier’s graphical logo. Two different methods are proposed, the first one uses a bag-of-visual-words model whereas the second one tries to locate logo images described by the blurred shape model descriptor within documents by a sliding-window technique. Preliminar results are reported with a dataset of real administrative documents.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium
Area Expedition Conference
Notes DAG; 600.056; 600.045; 605.203; 600.077 Approved no
Call Number Admin @ si @ RPK2014 Serial 2701
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo
Title Mathematical modeling of G protein-coupled receptor function: What can we learn from empirical and mechanistic models? Type Book Chapter
Year 2014 Publication (down) G Protein-Coupled Receptors – Modeling and Simulation Advances in Experimental Medicine and Biology Abbreviated Journal
Volume 796 Issue 3 Pages 159-181
Keywords β-arrestin; biased agonism; curve fitting; empirical modeling; evolutionary algorithm; functional selectivity; G protein; GPCR; Hill coefficient; intrinsic efficacy; inverse agonism; mathematical modeling; mechanistic modeling; operational model; parameter optimization; receptor dimer; receptor oligomerization; receptor constitutive activity; signal transduction; two-state model
Abstract Empirical and mechanistic models differ in their approaches to the analysis of pharmacological effect. Whereas the parameters of the former are not physical constants those of the latter embody the nature, often complex, of biology. Empirical models are exclusively used for curve fitting, merely to characterize the shape of the E/[A] curves. Mechanistic models, on the contrary, enable the examination of mechanistic hypotheses by parameter simulation. Regretfully, the many parameters that mechanistic models may include can represent a great difficulty for curve fitting, representing, thus, a challenge for computational method development. In the present study some empirical and mechanistic models are shown and the connections, which may appear in a number of cases between them, are analyzed from the curves they yield. It may be concluded that systematic and careful curve shape analysis can be extremely useful for the understanding of receptor function, ligand classification and drug discovery, thus providing a common language for the communication between pharmacologists and medicinal chemists.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0065-2598 ISBN 978-94-007-7422-3 Medium
Area Expedition Conference
Notes IAM; 600.075 Approved no
Call Number IAM @ iam @ RGG2014 Serial 2197
Permanent link to this record
 

 
Author Joan Marc Llargues Asensio; Juan Peralta; Raul Arrabales; Manuel Gonzalez Bedia; Paulo Cortez; Antonio Lopez
Title Artificial Intelligence Approaches for the Generation and Assessment of Believable Human-Like Behaviour in Virtual Characters Type Journal Article
Year 2014 Publication (down) Expert Systems With Applications Abbreviated Journal EXSY
Volume 41 Issue 16 Pages 7281–7290
Keywords Turing test; Human-like behaviour; Believability; Non-player characters; Cognitive architectures; Genetic algorithm; Artificial neural networks
Abstract Having artificial agents to autonomously produce human-like behaviour is one of the most ambitious original goals of Artificial Intelligence (AI) and remains an open problem nowadays. The imitation game originally proposed by Turing constitute a very effective method to prove the indistinguishability of an artificial agent. The behaviour of an agent is said to be indistinguishable from that of a human when observers (the so-called judges in the Turing test) cannot tell apart humans and non-human agents. Different environments, testing protocols, scopes and problem domains can be established to develop limited versions or variants of the original Turing test. In this paper we use a specific version of the Turing test, based on the international BotPrize competition, built in a First-Person Shooter video game, where both human players and non-player characters interact in complex virtual environments. Based on our past experience both in the BotPrize competition and other robotics and computer game AI applications we have developed three new more advanced controllers for believable agents: two based on a combination of the CERA–CRANIUM and SOAR cognitive architectures and other based on ADANN, a system for the automatic evolution and adaptation of artificial neural networks. These two new agents have been put to the test jointly with CCBot3, the winner of BotPrize 2010 competition (Arrabales et al., 2012), and have showed a significant improvement in the humanness ratio. Additionally, we have confronted all these bots to both First-person believability assessment (BotPrize original judging protocol) and Third-person believability assessment, demonstrating that the active involvement of the judge has a great impact in the recognition of human-like behaviour.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.055; 600.057; 600.076 Approved no
Call Number Admin @ si @ LPA2014 Serial 2500
Permanent link to this record
 

 
Author Gabriel Villalonga; Sebastian Ramos; German Ros; David Vazquez; Antonio Lopez
Title 3d Pedestrian Detection via Random Forest Type Miscellaneous
Year 2014 Publication (down) European Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 231-238
Keywords Pedestrian Detection
Abstract Our demo focuses on showing the extraordinary performance of our novel 3D pedestrian detector along with its simplicity and real-time capabilities. This detector has been designed for autonomous driving applications, but it can also be applied in other scenarios that cover both outdoor and indoor applications.
Our pedestrian detector is based on the combination of a random forest classifier with HOG-LBP features and the inclusion of a preprocessing stage based on 3D scene information in order to precisely determinate the image regions where the detector should search for pedestrians. This approach ends up in a high accurate system that runs real-time as it is required by many computer vision and robotics applications.
Address Zurich; suiza; September 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCV-Demo
Notes ADAS; 600.076 Approved no
Call Number Admin @ si @ VRR2014 Serial 2570
Permanent link to this record