toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Artur Xarles; Sergio Escalera; Thomas B. Moeslund; Albert Clapes edit  url
openurl 
  Title ASTRA: An Action Spotting TRAnsformer for Soccer Videos Type Conference Article
  Year 2023 Publication (down) Proceedings of the 6th International Workshop on Multimedia Content Analysis in Sports Abbreviated Journal  
  Volume Issue Pages 93–102  
  Keywords  
  Abstract In this paper, we introduce ASTRA, a Transformer-based model designed for the task of Action Spotting in soccer matches. ASTRA addresses several challenges inherent in the task and dataset, including the requirement for precise action localization, the presence of a long-tail data distribution, non-visibility in certain actions, and inherent label noise. To do so, ASTRA incorporates (a) a Transformer encoder-decoder architecture to achieve the desired output temporal resolution and to produce precise predictions, (b) a balanced mixup strategy to handle the long-tail distribution of the data, (c) an uncertainty-aware displacement head to capture the label variability, and (d) input audio signal to enhance detection of non-visible actions. Results demonstrate the effectiveness of ASTRA, achieving a tight Average-mAP of 66.82 on the test set. Moreover, in the SoccerNet 2023 Action Spotting challenge, we secure the 3rd position with an Average-mAP of 70.21 on the challenge set.  
  Address Otawa; Canada; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MMSports  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ XEM2023 Serial 3970  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Sanket Biswas; Andres Mafla; Ali Furkan Biten; Alicia Fornes; Yousri Kessentini; Josep Llados; Lluis Gomez; Dimosthenis Karatzas edit  url
openurl 
  Title Text-DIAE: a self-supervised degradation invariant autoencoder for text recognition and document enhancement Type Conference Article
  Year 2023 Publication (down) Proceedings of the 37th AAAI Conference on Artificial Intelligence Abbreviated Journal  
  Volume 37 Issue 2 Pages  
  Keywords Representation Learning for Vision; CV Applications; CV Language and Vision; ML Unsupervised; Self-Supervised Learning  
  Abstract In this paper, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE), a self-supervised model designed to tackle two tasks, text recognition (handwritten or scene-text) and document image enhancement. We start by employing a transformer-based architecture that incorporates three pretext tasks as learning objectives to be optimized during pre-training without the usage of labelled data. Each of the pretext objectives is specifically tailored for the final downstream tasks. We conduct several ablation experiments that confirm the design choice of the selected pretext tasks. Importantly, the proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time requiring substantially fewer data samples to converge. Finally, we demonstrate that our method surpasses the state-of-the-art in existing supervised and self-supervised settings in handwritten and scene text recognition and document image enhancement. Our code and trained models will be made publicly available at https://github.com/dali92002/SSL-OCR  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AAAI  
  Notes DAG Approved no  
  Call Number Admin @ si @ SBM2023 Serial 3848  
Permanent link to this record
 

 
Author Khanh Nguyen; Ali Furkan Biten; Andres Mafla; Lluis Gomez; Dimosthenis Karatzas edit  url
openurl 
  Title Show, Interpret and Tell: Entity-Aware Contextualised Image Captioning in Wikipedia Type Conference Article
  Year 2023 Publication (down) Proceedings of the 37th AAAI Conference on Artificial Intelligence Abbreviated Journal  
  Volume 37 Issue 2 Pages 1940-1948  
  Keywords  
  Abstract Humans exploit prior knowledge to describe images, and are able to adapt their explanation to specific contextual information given, even to the extent of inventing plausible explanations when contextual information and images do not match. In this work, we propose the novel task of captioning Wikipedia images by integrating contextual knowledge. Specifically, we produce models that jointly reason over Wikipedia articles, Wikimedia images and their associated descriptions to produce contextualized captions. The same Wikimedia image can be used to illustrate different articles, and the produced caption needs to be adapted to the specific context allowing us to explore the limits of the model to adjust captions to different contextual information. Dealing with out-of-dictionary words and Named Entities is a challenging task in this domain. To address this, we propose a pre-training objective, Masked Named Entity Modeling (MNEM), and show that this pretext task results to significantly improved models. Furthermore, we verify that a model pre-trained in Wikipedia generalizes well to News Captioning datasets. We further define two different test splits according to the difficulty of the captioning task. We offer insights on the role and the importance of each modality and highlight the limitations of our model.  
  Address Washington; USA; February 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AAAI  
  Notes DAG Approved no  
  Call Number Admin @ si @ NBM2023 Serial 3860  
Permanent link to this record
 

 
Author Siyang Song; Micol Spitale; Cheng Luo; German Barquero; Cristina Palmero; Sergio Escalera; Michel Valstar; Tobias Baur; Fabien Ringeval; Elisabeth Andre; Hatice Gunes edit  url
openurl 
  Title REACT2023: The First Multiple Appropriate Facial Reaction Generation Challenge Type Conference Article
  Year 2023 Publication (down) Proceedings of the 31st ACM International Conference on Multimedia Abbreviated Journal  
  Volume Issue Pages 9620–9624  
  Keywords  
  Abstract The Multiple Appropriate Facial Reaction Generation Challenge (REACT2023) is the first competition event focused on evaluating multimedia processing and machine learning techniques for generating human-appropriate facial reactions in various dyadic interaction scenarios, with all participants competing strictly under the same conditions. The goal of the challenge is to provide the first benchmark test set for multi-modal information processing and to foster collaboration among the audio, visual, and audio-visual behaviour analysis and behaviour generation (a.k.a generative AI) communities, to compare the relative merits of the approaches to automatic appropriate facial reaction generation under different spontaneous dyadic interaction conditions. This paper presents: (i) the novelties, contributions and guidelines of the REACT2023 challenge; (ii) the dataset utilized in the challenge; and (iii) the performance of the baseline systems on the two proposed sub-challenges: Offline Multiple Appropriate Facial Reaction Generation and Online Multiple Appropriate Facial Reaction Generation, respectively. The challenge baseline code is publicly available at https://github.com/reactmultimodalchallenge/baseline_react2023.  
  Address Otawa; Canada; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MM  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ SSL2023 Serial 3931  
Permanent link to this record
 

 
Author Cristina Palmero; Oleg V Komogortsev; Sergio Escalera; Sachin S Talathi edit  url
openurl 
  Title Multi-Rate Sensor Fusion for Unconstrained Near-Eye Gaze Estimation Type Conference Article
  Year 2023 Publication (down) Proceedings of the 2023 Symposium on Eye Tracking Research and Applications Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract The power requirements of video-oculography systems can be prohibitive for high-speed operation on portable devices. Recently, low-power alternatives such as photosensors have been evaluated, providing gaze estimates at high frequency with a trade-off in accuracy and robustness. Potentially, an approach combining slow/high-fidelity and fast/low-fidelity sensors should be able to exploit their complementarity to track fast eye motion accurately and robustly. To foster research on this topic, we introduce OpenSFEDS, a near-eye gaze estimation dataset containing approximately 2M synthetic camera-photosensor image pairs sampled at 500 Hz under varied appearance and camera position. We also formulate the task of sensor fusion for gaze estimation, proposing a deep learning framework consisting in appearance-based encoding and temporal eye-state dynamics. We evaluate several single- and multi-rate fusion baselines on OpenSFEDS, achieving 8.7% error decrease when tracking fast eye movements with a multi-rate approach vs. a gaze forecasting approach operating with a low-speed sensor alone.  
  Address Tubingen; Germany; May 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ETRA  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ PKE2023 Serial 3923  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa edit  openurl
  Title Toward a Thermal Image-Like Representation Type Conference Article
  Year 2023 Publication (down) Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
  Volume Issue Pages 133-140  
  Keywords  
  Abstract This paper proposes a novel model to obtain thermal image-like representations to be used as an input in any thermal image compressive sensing approach (e.g., thermal image: filtering, enhancing, super-resolution). Thermal images offer interesting information about the objects in the scene, in addition to their temperature. Unfortunately, in most of the cases thermal cameras acquire low resolution/quality images. Hence, in order to improve these images, there are several state-of-the-art approaches that exploit complementary information from a low-cost channel (visible image) to increase the image quality of an expensive channel (infrared image). In these SOTA approaches visible images are fused at different levels without paying attention the images acquire information at different bands of the spectral. In this paper a novel approach is proposed to generate thermal image-like representations from a low cost visible images, by means of a contrastive cycled GAN network. Obtained representations (synthetic thermal image) can be later on used to improve the low quality thermal image of the same scene. Experimental results on different datasets are presented.  
  Address Lisboa; Portugal; February 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SuS2023b Serial 3927  
Permanent link to this record
 

 
Author David Dueñas; Mostafa Kamal; Petia Radeva edit  openurl
  Title Efficient Deep Learning Ensemble for Skin Lesion Classification Type Conference Article
  Year 2023 Publication (down) Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
  Volume Issue Pages 303-314  
  Keywords  
  Abstract Vision Transformers (ViTs) are deep learning techniques that have been gaining in popularity in recent years.
In this work, we study the performance of ViTs and Convolutional Neural Networks (CNNs) on skin lesions classification tasks, specifically melanoma diagnosis. We show that regardless of the performance of both architectures, an ensemble of them can improve their generalization. We also present an adaptation to the Gram-OOD* method (detecting Out-of-distribution (OOD) using Gram matrices) for skin lesion images. Moreover, the integration of super-convergence was critical to success in building models with strict computing and training time constraints. We evaluated our ensemble of ViTs and CNNs, demonstrating that generalization is enhanced by placing first in the 2019 and third in the 2020 ISIC Challenge Live Leaderboards
(available at https://challenge.isic-archive.com/leaderboards/live/).
 
  Address Lisboa; Portugal; February 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes MILAB Approved no  
  Call Number Admin @ si @ DKR2023 Serial 3928  
Permanent link to this record
 

 
Author Armin Mehri edit  isbn
openurl 
  Title Deep learning based architectures for cross-domain image processing Type Book Whole
  Year 2023 Publication (down) PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Human vision is restricted to the visual-optical spectrum. Machine vision is not.
Cameras sensitive to diverse infrared spectral bands can improve the capacities of
autonomous systems and provide a comprehensive view. Relevant scene content
can be made visible, particularly in situations when sensors of other modalities,
such as a visual-optical camera, require a source of illumination. As a result, increasing the level of automation not only avoids human errors but also reduces
machine-induced errors. Furthermore, multi-spectral sensor systems with infrared
imagery as one modality are a rich source of information and can conceivably
increase the robustness of many autonomous systems. Robotics, automobiles,
biometrics, security, surveillance, and the military are some examples of fields
that can profit from the use of infrared imagery in their respective applications.
Although multimodal spectral sensors have come a long way, there are still several
bottlenecks that prevent us from combining their output information and using
them as comprehensive images. The primary issue with infrared imaging is the lack
of potential benefits due to their cost influence on sensor resolution, which grows
exponentially with greater resolution. Due to the more costly sensor technology
required for their development, their resolutions are substantially lower than thoseof regular digital cameras.
This thesis aims to improve beyond-visible-spectrum machine vision by integrating multi-modal spectral sensors. The emphasis is on transforming the produced images to enhance their resolution to match expected human perception, bring the color representation close to human understanding of natural color, and improve machine vision application performance. This research focuses mainly on two tasks, image Colorization and Image Super resolution for both single- and cross-domain problems. We first start with an extensive review of the state of the art in both tasks, point out the shortcomings of existing approaches, and then present our solutions to address their limitations. Our solutions demonstrate that low-cost channel information (i.e., visible image) can be used to improve expensive channel
information (i.e., infrared image), resulting in images with higher quality and closer to human perception at a lower cost than a high-cost infrared camera.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-1-5 Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ Meh2023 Serial 3959  
Permanent link to this record
 

 
Author Chenshen Wu edit  isbn
openurl 
  Title Going beyond Classification Problems for the Continual Learning of Deep Neural Networks Type Book Whole
  Year 2023 Publication (down) PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep learning has made tremendous progress in the last decade due to the explosion of training data and computational power. Through end-to-end training on a
large dataset, image representations are more discriminative than the previously
used hand-crafted features. However, for many real-world applications, training
and testing on a single dataset is not realistic, as the test distribution may change over time. Continuous learning takes this situation into account, where the learner must adapt to a sequence of tasks, each with a different distribution. If you would naively continue training the model with a new task, the performance of the model would drop dramatically for the previously learned data. This phenomenon is known as catastrophic forgetting.
Many approaches have been proposed to address this problem, which can be divided into three main categories: regularization-based approaches, rehearsal-based
approaches, and parameter isolation-based approaches. However, most of the existing works focus on image classification tasks and many other computer vision tasks
have not been well-explored in the continual learning setting. Therefore, in this
thesis, we study continual learning for image generation, object re-identification,
and object counting.
For the image generation problem, since the model can generate images from the previously learned task, it is free to apply rehearsal without any limitation. We developed two methods based on generative replay. The first one uses the generated image for joint training together with the new data. The second one is based on
output pixel-wise alignment. We extensively evaluate these methods on several
benchmarks.
Next, we study continual learning for object Re-Identification (ReID). Although
most state-of-the-art methods of ReID and continual ReID use softmax-triplet loss,
we found that it is better to solve the ReID problem from a meta-learning perspective because continual learning of reID can benefit a lot from the generalization of metalearning. We also propose a distillation loss and found that the removal of the positive pairs before the distillation loss is critical.
Finally, we study continual learning for the counting problem. We study the mainstream method based on density maps and propose a new approach for density
map distillation. We found that fixing the counter head is crucial for the continual learning of object counting. To further improve results, we propose an adaptor to adapt the changing feature extractor for the fixed counter head. Extensive evaluation shows that this results in improved continual learning performance.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-0-8 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Wu2023 Serial 3960  
Permanent link to this record
 

 
Author Jose Elias Yauri edit  openurl
  Title Deep Learning Based Data Fusion Approaches for the Assessment of Cognitive States on EEG Signals Type Book Whole
  Year 2023 Publication (down) PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract For millennia, the study of the couple brain-mind has fascinated the humanity in order to understand the complex nature of cognitive states. A cognitive state is the state of the mind at a specific time and involves cognition activities to acquire and process information for making a decision, solving a problem, or achieving a goal.
While normal cognitive states assist in the successful accomplishment of tasks; on the contrary, abnormal states of the mind can lead to task failures due to a reduced cognition capability. In this thesis, we focus on the assessment of cognitive states by means of the analysis of ElectroEncephaloGrams (EEG) signals using deep learning methods. EEG records the electrical activity of the brain using a set of electrodes placed on the scalp that output a set of spatiotemporal signals that are expected to be correlated to a specific mental process.
From the point of view of artificial intelligence, any method for the assessment of cognitive states using EEG signals as input should face several challenges. On the one hand, one should determine which is the most suitable approach for the optimal combination of the multiple signals recorded by EEG electrodes. On the other hand, one should have a protocol for the collection of good quality unambiguous annotated data, and an experimental design for the assessment of the generalization and transfer of models. In order to tackle them, first, we propose several convolutional neural architectures to perform data fusion of the signals recorded by EEG electrodes, at raw signal and feature levels. Four channel fusion methods, easy to incorporate into any neural network architecture, are proposed and assessed. Second, we present a method to create an unambiguous dataset for the prediction of cognitive mental workload using serious games and an Airbus-320 flight simulator. Third, we present a validation protocol that takes into account the levels of generalization of models based on the source and amount of test data.
Finally, the approaches for the assessment of cognitive states are applied to two use cases of high social impact: the assessment of mental workload for personalized support systems in the cockpit and the detection of epileptic seizures. The results obtained from the first use case show the feasibility of task transfer of models trained to detect workload in serious games to real flight scenarios. The results from the second use case show the generalization capability of our EEG channel fusion methods at k-fold cross-validation, patient-specific, and population levels.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Aura Hernandez;Debora Gil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Yau2023 Serial 3962  
Permanent link to this record
 

 
Author Shiqi Yang edit  isbn
openurl 
  Title Towards Source-Free Domain Adaption of Neural Networks in an Open World Type Book Whole
  Year 2023 Publication (down) PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Though they achieve great success, deep neural networks typically require a huge
amount of labeled data for training. However, collecting labeled data is often laborious and expensive. It would, therefore, be ideal if the knowledge obtained from label-rich datasets could be transferred to unlabeled data. However, deep networks are weak at generalizing to unseen domains, even when the differences are only subtle between the datasets. In real-world situations, a typical factor impairing the model generalization ability is the distribution shift between data from different domains, which is a long-standing problem usually termed as (unsupervised) domain adaptation.
A crucial requirement in the methodology of these domain adaptation methods is that they require access to source domain data during the adaptation process to the target domain. Accessibility to the source data of a trained source model is often impossible in real-world applications, for example, when deploying domain adaptation algorithms on mobile devices where the computational capacity is limited or in situations where data privacy rules limit access to the source domain data. Without access to the source domain data, existing methods suffer from inferior performance. Thus, in this thesis, we investigate domain adaptation without source data (termed as source-free domain adaptation) in multiple different scenarios that focus on image classification tasks.
We first study the source-free domain adaptation problem in a closed-set setting,
where the label space of different domains is identical. Only accessing the pretrained source model, we propose to address source-free domain adaptation from the perspective of unsupervised clustering. We achieve this based on nearest neighborhood clustering. In this way, we can transfer the challenging source-free domain adaptation task to a type of clustering problem. The final optimization objective is an upper bound containing only two simple terms, which can be explained as discriminability and diversity. We show that this allows us to relate several other methods in domain adaptation, unsupervised clustering and contrastive learning via the perspective of discriminability and diversity.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Joost  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-3-9 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Yan2023 Serial 3963  
Permanent link to this record
 

 
Author Yi Xiao edit  isbn
openurl 
  Title Advancing Vision-based End-to-End Autonomous Driving Type Book Whole
  Year 2023 Publication (down) PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In autonomous driving, artificial intelligence (AI) processes the traffic environment to drive the vehicle to a desired destination. Currently, there are different paradigms that address the development of AI-enabled drivers. On the one hand, we find modular pipelines, which divide the driving task into sub-tasks such as perception, maneuver planning, and control. On the other hand, we find end-to-end driving approaches that attempt to learn the direct mapping of raw data from input sensors to vehicle control signals. The latter are relatively less studied but are gaining popularity as they are less demanding in terms of data labeling. Therefore, in this thesis, our goal is to investigate end-to-end autonomous driving.
We propose to evaluate three approaches to tackle the challenge of end-to-end
autonomous driving. First, we focus on the input, considering adding depth information as complementary to RGB data, in order to mimic the human being’s
ability to estimate the distance to obstacles. Notice that, in the real world, these depth maps can be obtained either from a LiDAR sensor, or a trained monocular
depth estimation module, where human labeling is not needed. Then, based on
the intuition that the latent space of end-to-end driving models encodes relevant
information for driving, we use it as prior knowledge for training an affordancebased driving model. In this case, the trained affordance-based model can achieve good performance while requiring less human-labeled data, and it can provide interpretability regarding driving actions. Finally, we present a new pure vision-based end-to-end driving model termed CIL++, which is trained by imitation learning.
CIL++ leverages modern best practices, such as a large horizontal field of view and
a self-attention mechanism, which are contributing to the agent’s understanding of
the driving scene and bringing a better imitation of human drivers. Using training
data without any human labeling, our model yields almost expert performance in
the CARLA NoCrash benchmark and could rival SOTA models that require large amounts of human-labeled data.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-4-6 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Xia2023 Serial 3964  
Permanent link to this record
 

 
Author Diego Velazquez edit  isbn
openurl 
  Title Towards Robustness in Computer-based Image Understanding Type Book Whole
  Year 2023 Publication (down) PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This thesis embarks on an exploratory journey into robustness in deep learning,
with a keen focus on the intertwining facets of generalization, explainability, and
edge cases within the realm of computer vision. In deep learning, robustness
epitomizes a model’s resilience and flexibility, grounded on its capacity to generalize across diverse data distributions, explain its predictions transparently, and navigate the intricacies of edge cases effectively. The challenges associated with robust generalization are multifaceted, encompassing the model’s performance on unseen data and its defense against out-of-distribution data and adversarial attacks. Bridging this gap, the potential of Embedding Propagation (EP) for improving out-of-distribution generalization is explored. EP is depicted as a powerful tool facilitating manifold smoothing, which in turn fortifies the model’s robustness against adversarial onslaughts and bolsters performance in few-shot and self-/semi-supervised learning scenarios. In the labyrinth of deep learning models, the path to robustness often intersects with explainability. As model complexity increases, so does the urgency to decipher their decision-making
processes. Acknowledging this, the thesis introduces a robust framework for
evaluating and comparing various counterfactual explanation methods, echoing
the imperative of explanation quality over quantity and spotlighting the intricacies of diversifying explanations. Simultaneously, the deep learning landscape is fraught with edge cases – anomalies in the form of small objects or rare instances in object detection tasks that defy the norm. Confronting this, the
thesis presents an extension of the DETR (DEtection TRansformer) model to enhance small object detection. The devised DETR-FP, embedding the Feature Pyramid technique, demonstrating improvement in small objects detection accuracy, albeit facing challenges like high computational costs. With emergence of foundation models in mind, the thesis unveils EarthView, the largest scale remote sensing dataset to date, built for the self-supervised learning of a robust foundational model for remote sensing. Collectively, these studies contribute to the grand narrative of robustness in deep learning, weaving together the strands of generalization, explainability, and edge case performance. Through these methodological advancements and novel datasets, the thesis calls for continued exploration, innovation, and refinement to fortify the bastion of robust computer vision.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Jordi Gonzalez;Josep M. Gonfaus;Pau Rodriguez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-81-126409-5-3 Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Vel2023 Serial 3965  
Permanent link to this record
 

 
Author Bonifaz Stuhr edit  isbn
openurl 
  Title Towards Unsupervised Representation Learning: Learning, Evaluating and Transferring Visual Representations Type Book Whole
  Year 2023 Publication (down) PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Unsupervised representation learning aims at finding methods that learn representations from data without annotation-based signals. Abstaining from annotations not only leads to economic benefits but may – and to some extent already does – result in advantages regarding the representation’s structure, robustness, and generalizability to different tasks. In the long run, unsupervised methods are expected to surpass their supervised counterparts due to the reduction of human intervention and the inherently more general setup that does not bias the optimization towards an objective originating from specific annotation-based signals. While major advantages of unsupervised representation learning have been recently observed in natural language processing, supervised methods still dominate in vision domains for most tasks. In this dissertation, we contribute to the field of unsupervised (visual) representation learning from three perspectives: (i) Learning representations: We design unsupervised, backpropagation-free Convolutional Self-Organizing Neural Networks (CSNNs) that utilize self-organization- and Hebbian-based learning rules to learn convolutional kernels and masks to achieve deeper backpropagation-free models. Thereby, we observe that backpropagation-based and -free methods can suffer from an objective function mismatch between the unsupervised pretext task and the target task. This mismatch can lead to performance decreases for the target task. (ii) Evaluating representations: We build upon the widely used (non-)linear evaluation protocol to define pretext- and target-objective-independent metrics for measuring the objective function mismatch. With these metrics, we evaluate various pretext and target tasks and disclose dependencies of the objective function mismatch concerning different parts of the training and model setup. (iii) Transferring representations: We contribute CARLANE, the first 3-way sim-to-real domain adaptation benchmark for 2D lane detection. We adopt several well-known unsupervised domain adaptation methods as baselines and propose a method based on prototypical cross-domain self-supervised learning. Finally, we focus on pixel-based unsupervised domain adaptation and contribute a content-consistent unpaired image-to-image translation method that utilizes masks, global and local discriminators, and similarity sampling to mitigate content inconsistencies, as well as feature-attentive denormalization to fuse content-based statistics into the generator stream. In addition, we propose the cKVD metric to incorporate class-specific content inconsistencies into perceptual metrics for measuring translation quality.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIA Place of Publication Editor Jordi Gonzalez;Jurgen Brauer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-6-0 Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Stu2023 Serial 3966  
Permanent link to this record
 

 
Author Ruben Perez Tito edit  isbn
openurl 
  Title Exploring the role of Text in Visual Question Answering on Natural Scenes and Documents Type Book Whole
  Year 2023 Publication (down) PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Visual Question Answering (VQA) is the task where given an image and a natural language question, the objective is to generate a natural language answer. At the intersection between computer vision and natural language processing, this task can be seen as a measure of image understanding capabilities, as it requires to reason about objects, actions, colors, positions, the relations between the different elements as well as commonsense reasoning, world knowledge, arithmetic skills and natural language understanding. However, even though the text present in the images conveys important semantically rich information that is explicit and not available in any other form, most VQA methods remained illiterate, largely
ignoring the text despite its potential significance. In this thesis, we set out on a journey to bring reading capabilities to computer vision models applied to the VQA task, creating new datasets and methods that can read, reason and integrate the text with other visual cues in natural scene images and documents.
In Chapter 3, we address the combination of scene text with visual information to fully understand all the nuances of natural scene images. To achieve this objective, we define a new sub-task of VQA that requires reading the text in the image, and highlight the limitations of the current methods. In addition, we propose a new architecture that integrates both modalities and jointly reasons about textual and visual features. In Chapter 5, we shift the domain of VQA with reading capabilities and apply it on scanned industry document images, providing a high-level end-purpose perspective to Document Understanding, which has been
primarily focused on digitizing the document’s contents and extracting key values without considering the ultimate purpose of the extracted information. For this, we create a dataset which requires methods to reason about the unique and challenging elements of documents, such as text, images, tables, graphs and complex layouts, to provide accurate answers in natural language. However, we observed that explicit visual features provide a slight contribution in the overall performance, since the main information is usually conveyed within the text and its position. In consequence, in Chapter 6, we propose VQA on infographic images, seeking for document images with more visually rich elements that require to fully exploit visual information in order to answer the questions. We show the performance gap of
different methods when used over industry scanned and infographic images, and propose a new method that integrates the visual features in early stages, which allows the transformer architecture to exploit the visual features during the self-attention operation. Instead, in Chapter 7, we apply VQA on a big collection of single-page documents, where the methods must find which documents are relevant to answer the question, and provide the answer itself. Finally, in Chapter 8, mimicking real-world application problems where systems must process documents with multiple pages, we address the multipage document visual question answering task. We demonstrate the limitations of existing methods, including models specifically designed to process long sequences. To overcome these limitations, we propose
a hierarchical architecture that can process long documents, answer questions, and provide the index of the page where the information to answer the question is located as an explainability measure.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Ernest Valveny  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-5-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Per2023 Serial 3967  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: