|   | 
Details
   web
Records
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera
Title Logo recognition Based on the Dempster-Shafer Fusion of Multiple Classifiers Type Conference Article
Year 2013 Publication (down) 26th Canadian Conference on Artificial Intelligence Abbreviated Journal
Volume 7884 Issue Pages 1-12
Keywords Logo recognition; ensemble classification; Dempster-Shafer fusion; Zernike moments; generic Fourier descriptor; shape signature
Abstract Best paper award
The performance of different feature extraction and shape description methods in trademark image recognition systems have been studied by several researchers. However, the potential improvement in classification through feature fusion by ensemble-based methods has remained unattended. In this work, we evaluate the performance of an ensemble of three classifiers, each trained on different feature sets. Three promising shape description techniques, including Zernike moments, generic Fourier descriptors, and shape signature are used to extract informative features from logo images, and each set of features is fed into an individual classifier. In order to reduce recognition error, a powerful combination strategy based on the Dempster-Shafer theory is utilized to fuse the three classifiers trained on different sources of information. This combination strategy can effectively make use of diversity of base learners generated with different set of features. The recognition results of the individual classifiers are compared with those obtained from fusing the classifiers’ output, showing significant performance improvements of the proposed methodology.
Address Canada; May 2013
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-38456-1 Medium
Area Expedition Conference AI
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ BGE2013b Serial 2249
Permanent link to this record
 

 
Author Victor Ponce; Hugo Jair Escalante; Sergio Escalera; Xavier Baro
Title Gesture and Action Recognition by Evolved Dynamic Subgestures Type Conference Article
Year 2015 Publication (down) 26th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages 129.1-129.13
Keywords
Abstract This paper introduces a framework for gesture and action recognition based on the evolution of temporal gesture primitives, or subgestures. Our work is inspired on the principle of producing genetic variations within a population of gesture subsequences, with the goal of obtaining a set of gesture units that enhance the generalization capability of standard gesture recognition approaches. In our context, gesture primitives are evolved over time using dynamic programming and generative models in order to recognize complex actions. In few generations, the proposed subgesture-based representation
of actions and gestures outperforms the state of the art results on the MSRDaily3D and MSRAction3D datasets.
Address Swansea; uk; September 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes HuPBA;MV Approved no
Call Number Admin @ si @ PEE2015 Serial 2657
Permanent link to this record
 

 
Author Huamin Ren; Weifeng Liu; Soren Ingvor Olsen; Sergio Escalera; Thomas B. Moeslund
Title Unsupervised Behavior-Specific Dictionary Learning for Abnormal Event Detection Type Conference Article
Year 2015 Publication (down) 26th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Swansea; uk; September 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ RLO2015 Serial 2658
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz
Title Combining Models from Multiple Sources for RGB-D Scene Recognition Type Conference Article
Year 2017 Publication (down) 26th International Joint Conference on Artificial Intelligence Abbreviated Journal
Volume Issue Pages 4523-4529
Keywords Robotics and Vision; Vision and Perception
Abstract Depth can complement RGB with useful cues about object volumes and scene layout. However, RGB-D image datasets are still too small for directly training deep convolutional neural networks (CNNs), in contrast to the massive monomodal RGB datasets. Previous works in RGB-D recognition typically combine two separate networks for RGB and depth data, pretrained with a large RGB dataset and then fine tuned to the respective target RGB and depth datasets. These approaches have several limitations: 1) only use low-level filters learned from RGB data, thus not being able to exploit properly depth-specific patterns, and 2) RGB and depth features are only combined at high-levels but rarely at lower-levels. In this paper, we propose a framework that leverages both knowledge acquired from large RGB datasets together with depth-specific cues learned from the limited depth data, obtaining more effective multi-source and multi-modal representations. We propose a multi-modal combination method that selects discriminative combinations of layers from the different source models and target modalities, capturing both high-level properties of the task and intrinsic low-level properties of both modalities.
Address Melbourne; Australia; August 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IJCAI
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ SJH2017b Serial 2966
Permanent link to this record
 

 
Author Quentin Angermann; Jorge Bernal; Cristina Sanchez Montes; Maroua Hammami; Gloria Fernandez Esparrach; Xavier Dray; Olivier Romain; F. Javier Sanchez; Aymeric Histace
Title Clinical Usability Quantification Of a Real-Time Polyp Detection Method In Videocolonoscopy Type Conference Article
Year 2017 Publication (down) 25th United European Gastroenterology Week Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Barcelona, October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ESGE
Notes MV; no menciona Approved no
Call Number Admin @ si @ ABS2017c Serial 2978
Permanent link to this record
 

 
Author Cristina Sanchez Montes; F. Javier Sanchez; Cristina Rodriguez de Miguel; Henry Cordova; Jorge Bernal; Maria Lopez Ceron; Josep Llach; Gloria Fernandez Esparrach
Title Histological Prediction Of Colonic Polyps By Computer Vision. Preliminary Results Type Conference Article
Year 2017 Publication (down) 25th United European Gastroenterology Week Abbreviated Journal
Volume Issue Pages
Keywords polyps; histology; computer vision
Abstract during colonoscopy, clinicians perform visual inspection of the polyps to predict histology. Kudo’s pit pattern classification is one of the most commonly used for optical diagnosis. These surface patterns present a contrast with respect to their neighboring regions and they can be considered as bright regions in the image that can attract the attention of computational methods.
Address Barcelona; October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ESGE
Notes MV; no menciona Approved no
Call Number Admin @ si @ SSR2017 Serial 2979
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Alicia Fornes; Y.Kessentini; C.Tudor
Title A Few-shot Learning Approach for Historical Encoded Manuscript Recognition Type Conference Article
Year 2021 Publication (down) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 5413-5420
Keywords
Abstract Encoded (or ciphered) manuscripts are a special type of historical documents that contain encrypted text. The automatic recognition of this kind of documents is challenging because: 1) the cipher alphabet changes from one document to another, 2) there is a lack of annotated corpus for training and 3) touching symbols make the symbol segmentation difficult and complex. To overcome these difficulties, we propose a novel method for handwritten ciphers recognition based on few-shot object detection. Our method first detects all symbols of a given alphabet in a line image, and then a decoding step maps the symbol similarity scores to the final sequence of transcribed symbols. By training on synthetic data, we show that the proposed architecture is able to recognize handwritten ciphers with unseen alphabets. In addition, if few labeled pages with the same alphabet are used for fine tuning, our method surpasses existing unsupervised and supervised HTR methods for ciphers recognition.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.121; 600.140 Approved no
Call Number Admin @ si @ SFK2021 Serial 3449
Permanent link to this record
 

 
Author Manuel Carbonell; Pau Riba; Mauricio Villegas; Alicia Fornes; Josep Llados
Title Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents Type Conference Article
Year 2020 Publication (down) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The use of administrative documents to communicate and leave record of business information requires of methods
able to automatically extract and understand the content from
such documents in a robust and efficient way. In addition,
the semi-structured nature of these reports is specially suited
for the use of graph-based representations which are flexible
enough to adapt to the deformations from the different document
templates. Moreover, Graph Neural Networks provide the proper
methodology to learn relations among the data elements in
these documents. In this work we study the use of Graph
Neural Network architectures to tackle the problem of entity
recognition and relation extraction in semi-structured documents.
Our approach achieves state of the art results in the three
tasks involved in the process. Additionally, the experimentation
with two datasets of different nature demonstrates the good
generalization ability of our approach.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ CRV2020 Serial 3509
Permanent link to this record
 

 
Author M. Li; Xialei Liu; Joost Van de Weijer; Bogdan Raducanu
Title Learning to Rank for Active Learning: A Listwise Approach Type Conference Article
Year 2020 Publication (down) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 5587-5594
Keywords
Abstract Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data hungry applications (such as image/video indexing and retrieval, autonomous driving, etc.). The goal of active learning is to automatically select a number of unlabeled samples for annotation (according to a budget), based on an acquisition function, which indicates how valuable a sample is for training the model. The learning loss method is a task-agnostic approach which attaches a module to learn to predict the target loss of unlabeled data, and select data with the highest loss for labeling. In this work, we follow this strategy but we define the acquisition function as a learning to rank problem and rethink the structure of the loss prediction module, using a simple but effective listwise approach. Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ LLW2020a Serial 3511
Permanent link to this record
 

 
Author Idoia Ruiz; Joan Serrat
Title Rank-based ordinal classification Type Conference Article
Year 2020 Publication (down) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 8069-8076
Keywords
Abstract Differently from the regular classification task, in ordinal classification there is an order in the classes. As a consequence not all classification errors matter the same: a predicted class close to the groundtruth one is better than predicting a farther away class. To account for this, most previous works employ loss functions based on the absolute difference between the predicted and groundtruth class labels. We argue that there are many cases in ordinal classification where label values are arbitrary (for instance 1. . . C, being C the number of classes) and thus such loss functions may not be the best choice. We instead propose a network architecture that produces not a single class prediction but an ordered vector, or ranking, of all the possible classes from most to least likely. This is thanks to a loss function that compares groundtruth and predicted rankings of these class labels, not the labels themselves. Another advantage of this new formulation is that we can enforce consistency in the predictions, namely, predicted rankings come from some unimodal vector of scores with mode at the groundtruth class. We compare with the state of the art ordinal classification methods, showing
that ours attains equal or better performance, as measured by common ordinal classification metrics, on three benchmark datasets. Furthermore, it is also suitable for a new task on image aesthetics assessment, i.e. most voted score prediction. Finally, we also apply it to building damage assessment from satellite images, providing an analysis of its performance depending on the degree of imbalance of the dataset.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes ADAS; 600.118; 600.124 Approved no
Call Number Admin @ si @ RuS2020 Serial 3549
Permanent link to this record
 

 
Author Klara Janousckova; Jiri Matas; Lluis Gomez; Dimosthenis Karatzas
Title Text Recognition – Real World Data and Where to Find Them Type Conference Article
Year 2020 Publication (down) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 4489-4496
Keywords
Abstract We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The method includes matching of imprecise transcriptions to weak annotations and an edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as “pseudo ground truth” (PGT). The method is applied to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7% on average, across different benchmark datasets (image domains) and 24.5% on one of the weakly annotated datasets 1 1 Acknowledgements. The authors were supported by Czech Technical University student grant SGS20/171/0HK3/3TJ13, the MEYS VVV project CZ.02.1.01/0.010.0J16 019/0000765 Research Center for Informatics, the Spanish Research project TIN2017-89779-P and the CERCA Programme / Generalitat de Catalunya.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.121; 600.129 Approved no
Call Number Admin @ si @ JMG2020 Serial 3557
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati Ardakani; Angel Sappa
Title LiNet: A Lightweight Network for Image Super Resolution Type Conference Article
Year 2021 Publication (down) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 7196-7202
Keywords
Abstract This paper proposes a new lightweight network, LiNet, that enhancing technical efficiency in lightweight super resolution and operating approximately like very large and costly networks in terms of number of network parameters and operations. The proposed architecture allows the network to learn more abstract properties by avoiding low-level information via multiple links. LiNet introduces a Compact Dense Module, which contains set of inner and outer blocks, to efficiently extract meaningful information, to better leverage multi-level representations before upsampling stage, and to allow an efficient information and gradient flow within the network. Experiments on benchmark datasets show that the proposed LiNet achieves favorable performance against lightweight state-of-the-art methods.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ MAS2021a Serial 3583
Permanent link to this record
 

 
Author Alejandro Cartas; Petia Radeva; Mariella Dimiccoli
Title Modeling long-term interactions to enhance action recognition Type Conference Article
Year 2021 Publication (down) 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 10351-10358
Keywords
Abstract In this paper, we propose a new approach to under-stand actions in egocentric videos that exploits the semantics of object interactions at both frame and temporal levels. At the frame level, we use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects and calculates the action score through a CNN formulation. This information is then fed to a Hierarchical LongShort-Term Memory Network (HLSTM) that captures temporal dependencies between actions within and across shots. Ablation studies thoroughly validate the proposed approach, showing in particular that both levels of the HLSTM architecture contribute to performance improvement. Furthermore, quantitative comparisons show that the proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks,without relying on motion information
Address January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes MILAB; Approved no
Call Number Admin @ si @ CRD2021 Serial 3626
Permanent link to this record
 

 
Author Marco Buzzelli; Joost Van de Weijer; Raimondo Schettini
Title Learning Illuminant Estimation from Object Recognition Type Conference Article
Year 2018 Publication (down) 25th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 3234 - 3238
Keywords Illuminant estimation; computational color constancy; semi-supervised learning; deep learning; convolutional neural networks
Abstract In this paper we present a deep learning method to estimate the illuminant of an image. Our model is not trained with illuminant annotations, but with the objective of improving performance on an auxiliary task such as object recognition. To the best of our knowledge, this is the first example of a deep
learning architecture for illuminant estimation that is trained without ground truth illuminants. We evaluate our solution on standard datasets for color constancy, and compare it with state of the art methods. Our proposal is shown to outperform most deep learning methods in a cross-dataset evaluation
setup, and to present competitive results in a comparison with parametric solutions.
Address Athens; Greece; October 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes LAMP; 600.109; 600.120 Approved no
Call Number Admin @ si @ BWS2018 Serial 3157
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title Near InfraRed Imagery Colorization Type Conference Article
Year 2018 Publication (down) 25th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 2237 - 2241
Keywords Convolutional Neural Networks (CNN), Generative Adversarial Network (GAN), Infrared Imagery colorization
Abstract This paper proposes a stacked conditional Generative Adversarial Network-based method for Near InfraRed (NIR) imagery colorization. We propose a variant architecture of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model. We show that this new architecture/loss-function yields better generalization and representation of the generated colored IR images. The proposed approach is evaluated on a large test dataset and compared to recent state of the art methods using standard metrics.
Address Athens; Greece; October 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes MSIAU; 600.086; 600.130; 600.122 Approved no
Call Number Admin @ si @ SSV2018b Serial 3195
Permanent link to this record