|   | 
Details
   web
Records
Author Hao Fang; Ajian Liu; Jun Wan; Sergio Escalera; Chenxu Zhao; Xu Zhang; Stan Z Li; Zhen Lei
Title Surveillance Face Anti-spoofing Type Journal Article
Year 2024 Publication (up) IEEE Transactions on Information Forensics and Security Abbreviated Journal TIFS
Volume 19 Issue Pages 1535-1546
Keywords
Abstract Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ FLW2024 Serial 3869
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Ekaterina Zaytseva; Fernando Azpiroz; Petia Radeva; Jordi Vitria
Title Detection of wrinkle frames in endoluminal videos using betweenness centrality measures for images Type Journal Article
Year 2014 Publication (up) IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB
Volume 18 Issue 6 Pages 1831-1838
Keywords Wireless Capsule Endoscopy; Small Bowel Motility Dysfunction; Contraction Detection; Structured Prediction; Betweenness Centrality
Abstract Intestinal contractions are one of the most important events to diagnose motility pathologies of the small intestine. When visualized by wireless capsule endoscopy (WCE), the sequence of frames that represents a contraction is characterized by a clear wrinkle structure in the central frames that corresponds to the folding of the intestinal wall. In this paper we present a new method to robustly detect wrinkle frames in full WCE videos by using a new mid-level image descriptor that is based on a centrality measure proposed for graphs. We present an extended validation, carried out in a very large database, that shows that the proposed method achieves state of the art performance for this task.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR; MILAB; 600.046;MV Approved no
Call Number Admin @ si @ SDZ2014 Serial 2385
Permanent link to this record
 

 
Author Carlo Gatta; Oriol Pujol; Oriol Rodriguez-Leor; J. M. Ferre; Petia Radeva
Title Fast Rigid Registration of Vascular Structures in IVUS Sequences Type Journal Article
Year 2009 Publication (up) IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal
Volume 13 Issue 6 Pages 106-1011
Keywords
Abstract Intravascular ultrasound (IVUS) technology permits visualization of high-resolution images of internal vascular structures. IVUS is a unique image-guiding tool to display longitudinal view of the vessels, and estimate the length and size of vascular structures with the goal of accurate diagnosis. Unfortunately, due to pulsatile contraction and expansion of the heart, the captured images are affected by different motion artifacts that make visual inspection difficult. In this paper, we propose an efficient algorithm that aligns vascular structures and strongly reduces the saw-shaped oscillation, simplifying the inspection of longitudinal cuts; it reduces the motion artifacts caused by the displacement of the catheter in the short-axis plane and the catheter rotation due to vessel tortuosity. The algorithm prototype aligns 3.16 frames/s and clearly outperforms state-of-the-art methods with similar computational cost. The speed of the algorithm is crucial since it allows to inspect the corrected sequence during patient intervention. Moreover, we improved an indirect methodology for IVUS rigid registration algorithm evaluation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-7771 ISBN Medium
Area Expedition Conference
Notes MILAB;HuPBA Approved no
Call Number BCNPCL @ bcnpcl @ GPL2009 Serial 1250
Permanent link to this record
 

 
Author David Rotger; Petia Radeva; N. Bruining
Title Automatic Detection of Bioabsorbable Coronary Stents in IVUS Images using a Cascade of Classifiers Type Journal Article
Year 2010 Publication (up) IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB
Volume 14 Issue 2 Pages 535 – 537
Keywords
Abstract Bioabsorbable drug-eluting coronary stents present a very promising improvement to the common metallic ones solving some of the most important problems of stent implantation: the late restenosis. These stents made of poly-L-lactic acid cause a very subtle acoustic shadow (compared to the metallic ones) making difficult the automatic detection and measurements in images. In this paper, we propose a novel approach based on a cascade of GentleBoost classifiers to detect the stent struts using structural features to code the information of the different subregions of the struts. A stochastic gradient descent method is applied to optimize the overall performance of the detector. Validation results of struts detection are very encouraging with an average F-measure of 81%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number BCNPCL @ bcnpcl @ RRB2010 Serial 1287
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Fernando Vilariño; Carolina Malagelada; Fernando Azpiroz; Petia Radeva; Jordi Vitria
Title Categorization and Segmentation of Intestinal Content Frames for Wireless Capsule Endoscopy Type Journal Article
Year 2012 Publication (up) IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB
Volume 16 Issue 6 Pages 1341-1352
Keywords
Abstract Wireless capsule endoscopy (WCE) is a device that allows the direct visualization of gastrointestinal tract with minimal discomfort for the patient, but at the price of a large amount of time for screening. In order to reduce this time, several works have proposed to automatically remove all the frames showing intestinal content. These methods label frames as {intestinal content – clear} without discriminating between types of content (with different physiological meaning) or the portion of image covered. In addition, since the presence of intestinal content has been identified as an indicator of intestinal motility, its accurate quantification can show a potential clinical relevance. In this paper, we present a method for the robust detection and segmentation of intestinal content in WCE images, together with its further discrimination between turbid liquid and bubbles. Our proposal is based on a twofold system. First, frames presenting intestinal content are detected by a support vector machine classifier using color and textural information. Second, intestinal content frames are segmented into {turbid, bubbles, and clear} regions. We show a detailed validation using a large dataset. Our system outperforms previous methods and, for the first time, discriminates between turbid from bubbles media.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-7771 ISBN Medium
Area 800 Expedition Conference
Notes MILAB; MV; OR;SIAI Approved no
Call Number Admin @ si @ SDV2012 Serial 2124
Permanent link to this record
 

 
Author Antonio Hernandez; Carlo Gatta; Sergio Escalera; Laura Igual; Victoria Martin-Yuste; Manel Sabate; Petia Radeva
Title Accurate coronary centerline extraction, caliber estimation and catheter detection in angiographies Type Journal Article
Year 2012 Publication (up) IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB
Volume 16 Issue 6 Pages 1332-1340
Keywords
Abstract Segmentation of coronary arteries in X-Ray angiography is a fundamental tool to evaluate arterial diseases and choose proper coronary treatment. The accurate segmentation of coronary arteries has become an important topic for the registration of different modalities which allows physicians rapid access to different medical imaging information from Computed Tomography (CT) scans or Magnetic Resonance Imaging (MRI). In this paper, we propose an accurate fully automatic algorithm based on Graph-cuts for vessel centerline extraction, caliber estimation, and catheter detection. Vesselness, geodesic paths, and a new multi-scale edgeness map are combined to customize the Graph-cuts approach to the segmentation of tubular structures, by means of a global optimization of the Graph-cuts energy function. Moreover, a novel supervised learning methodology that integrates local and contextual information is proposed for automatic catheter detection. We evaluate the method performance on three datasets coming from different imaging systems. The method performs as good as the expert observer w.r.t. centerline detection and caliber estimation. Moreover, the method discriminates between arteries and catheter with an accuracy of 96.5%, sensitivity of 72%, and precision of 97.4%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-7771 ISBN Medium
Area Expedition Conference
Notes MILAB;HuPBA Approved no
Call Number Admin @ si @ HGE2012 Serial 2141
Permanent link to this record
 

 
Author Cristina Cañero; Nikolaos Thomos; George A. Triantafyllid; George C. Litos; Michael G. Strintzis
Title Mobile Tele-echography: User Interface Design Type Journal
Year 2005 Publication (up) IEEE Transactions on Information Technology in Biomedicine, 9(1):44–49 (IF: 1.376) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ CTT2005 Serial 537
Permanent link to this record
 

 
Author Angel Sappa; Fadi Dornaika; Daniel Ponsa; David Geronimo; Antonio Lopez
Title An Efficient Approach to Onboard Stereo Vision System Pose Estimation Type Journal Article
Year 2008 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 9 Issue 3 Pages 476–490
Keywords Camera extrinsic parameter estimation, ground plane estimation, onboard stereo vision system
Abstract This paper presents an efficient technique for estimating the pose of an onboard stereo vision system relative to the environment’s dominant surface area, which is supposed to be the road surface. Unlike previous approaches, it can be used either for urban or highway scenarios since it is not based on a specific visual traffic feature extraction but on 3-D raw data points. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact 2-D representation of the original 3-D data points is computed. Then, a RANdom SAmple Consensus (RANSAC) based least-squares approach is used to fit a plane to the road. Fast RANSAC fitting is obtained by selecting points according to a probability function that takes into account the density of points at a given depth. Finally, stereo camera height and pitch angle are computed related to the fitted road plane. The proposed technique is intended to be used in driverassistance systems for applications such as vehicle or pedestrian detection. Experimental results on urban environments, which are the most challenging scenarios (i.e., flat/uphill/downhill driving, speed bumps, and car’s accelerations), are presented. These results are validated with manually annotated ground truth. Additionally, comparisons with previous works are presented to show the improvements in the central processing unit processing time, as well as in the accuracy of the obtained results.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number ADAS @ adas @ SDP2008 Serial 1000
Permanent link to this record
 

 
Author Xavier Baro; Sergio Escalera; Jordi Vitria; Oriol Pujol; Petia Radeva
Title Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification Type Journal Article
Year 2009 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 10 Issue 1 Pages 113–126
Keywords
Abstract The high variability of sign appearance in uncontrolled environments has made the detection and classification of road signs a challenging problem in computer vision. In this paper, we introduce a novel approach for the detection and classification of traffic signs. Detection is based on a boosted detectors cascade, trained with a novel evolutionary version of Adaboost, which allows the use of large feature spaces. Classification is defined as a multiclass categorization problem. A battery of classifiers is trained to split classes in an Error-Correcting Output Code (ECOC) framework. We propose an ECOC design through a forest of optimal tree structures that are embedded in the ECOC matrix. The novel system offers high performance and better accuracy than the state-of-the-art strategies and is potentially better in terms of noise, affine deformation, partial occlusions, and reduced illumination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes OR;MILAB;HuPBA;MV Approved no
Call Number BCNPCL @ bcnpcl @ BEV2008 Serial 1116
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez
Title Road Detection Based on Illuminant Invariance Type Journal Article
Year 2011 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 12 Issue 1 Pages 184-193
Keywords road detection
Abstract By using an onboard camera, it is possible to detect the free road surface ahead of the ego-vehicle. Road detection is of high relevance for autonomous driving, road departure warning, and supporting driver-assistance systems such as vehicle and pedestrian detection. The key for vision-based road detection is the ability to classify image pixels as belonging or not to the road surface. Identifying road pixels is a major challenge due to the intraclass variability caused by lighting conditions. A particularly difficult scenario appears when the road surface has both shadowed and nonshadowed areas. Accordingly, we propose a novel approach to vision-based road detection that is robust to shadows. The novelty of our approach relies on using a shadow-invariant feature space combined with a model-based classifier. The model is built online to improve the adaptability of the algorithm to the current lighting and the presence of other vehicles in the scene. The proposed algorithm works in still images and does not depend on either road shape or temporal restrictions. Quantitative and qualitative experiments on real-world road sequences with heavy traffic and shadows show that the method is robust to shadows and lighting variations. Moreover, the proposed method provides the highest performance when compared with hue-saturation-intensity (HSI)-based algorithms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number ADAS @ adas @ AlL2011 Serial 1456
Permanent link to this record
 

 
Author Fadi Dornaika; Jose Manuel Alvarez; Angel Sappa; Antonio Lopez
Title A New Framework for Stereo Sensor Pose through Road Segmentation and Registration Type Journal Article
Year 2011 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 12 Issue 4 Pages 954-966
Keywords road detection
Abstract This paper proposes a new framework for real-time estimation of the onboard stereo head's position and orientation relative to the road surface, which is required for any advanced driver-assistance application. This framework can be used with all road types: highways, urban, etc. Unlike existing works that rely on feature extraction in either the image domain or 3-D space, we propose a framework that directly estimates the unknown parameters from the stream of stereo pairs' brightness. The proposed approach consists of two stages that are invoked for every stereo frame. The first stage segments the road region in one monocular view. The second stage estimates the camera pose using a featureless registration between the segmented monocular road region and the other view in the stereo pair. This paper has two main contributions. The first contribution combines a road segmentation algorithm with a registration technique to estimate the online stereo camera pose. The second contribution solves the registration using a featureless method, which is carried out using two different optimization techniques: 1) the differential evolution algorithm and 2) the Levenberg-Marquardt (LM) algorithm. We provide experiments and evaluations of performance. The results presented show the validity of our proposed framework.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ DAS2011; ADAS @ adas @ das2011a Serial 1833
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez; Daniel Ponsa
Title Multiple target tracking for intelligent headlights control Type Journal Article
Year 2012 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 13 Issue 2 Pages 594-605
Keywords Intelligent Headlights
Abstract Intelligent vehicle lighting systems aim at automatically regulating the headlights' beam to illuminate as much of the road ahead as possible while avoiding dazzling other drivers. A key component of such a system is computer vision software that is able to distinguish blobs due to vehicles' headlights and rear lights from those due to road lamps and reflective elements such as poles and traffic signs. In a previous work, we have devised a set of specialized supervised classifiers to make such decisions based on blob features related to its intensity and shape. Despite the overall good performance, there remain challenging that have yet to be solved: notably, faint and tiny blobs corresponding to quite distant vehicles. In fact, for such distant blobs, classification decisions can be taken after observing them during a few frames. Hence, incorporating tracking could improve the overall lighting system performance by enforcing the temporal consistency of the classifier decision. Accordingly, this paper focuses on the problem of constructing blob tracks, which is actually one of multiple-target tracking (MTT), but under two special conditions: We have to deal with frequent occlusions, as well as blob splits and merges. We approach it in a novel way by formulating the problem as a maximum a posteriori inference on a Markov random field. The qualitative (in video form) and quantitative evaluation of our new MTT method shows good tracking results. In addition, we will also see that the classification performance of the problematic blobs improves due to the proposed MTT algorithm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ RLP2012; ADAS @ adas @ rsl2012g Serial 1877
Permanent link to this record
 

 
Author Marco Pedersoli; Jordi Gonzalez; Xu Hu; Xavier Roca
Title Toward Real-Time Pedestrian Detection Based on a Deformable Template Model Type Journal Article
Year 2014 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 15 Issue 1 Pages 355-364
Keywords
Abstract Most advanced driving assistance systems already include pedestrian detection systems. Unfortunately, there is still a tradeoff between precision and real time. For a reliable detection, excellent precision-recall such a tradeoff is needed to detect as many pedestrians as possible while, at the same time, avoiding too many false alarms; in addition, a very fast computation is needed for fast reactions to dangerous situations. Recently, novel approaches based on deformable templates have been proposed since these show a reasonable detection performance although they are computationally too expensive for real-time performance. In this paper, we present a system for pedestrian detection based on a hierarchical multiresolution part-based model. The proposed system is able to achieve state-of-the-art detection accuracy due to the local deformations of the parts while exhibiting a speedup of more than one order of magnitude due to a fast coarse-to-fine inference technique. Moreover, our system explicitly infers the level of resolution available so that the detection of small examples is feasible with a very reduced computational cost. We conclude this contribution by presenting how a graphics processing unit-optimized implementation of our proposed system is suitable for real-time pedestrian detection in terms of both accuracy and speed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ISE; 601.213; 600.078 Approved no
Call Number PGH2014 Serial 2350
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Ferran Diego; Antonio Lopez
Title Road Geometry Classification by Adaptative Shape Models Type Journal Article
Year 2013 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 14 Issue 1 Pages 459-468
Keywords road detection
Abstract Vision-based road detection is important for different applications in transportation, such as autonomous driving, vehicle collision warning, and pedestrian crossing detection. Common approaches to road detection are based on low-level road appearance (e.g., color or texture) and neglect of the scene geometry and context. Hence, using only low-level features makes these algorithms highly depend on structured roads, road homogeneity, and lighting conditions. Therefore, the aim of this paper is to classify road geometries for road detection through the analysis of scene composition and temporal coherence. Road geometry classification is proposed by building corresponding models from training images containing prototypical road geometries. We propose adaptive shape models where spatial pyramids are steered by the inherent spatial structure of road images. To reduce the influence of lighting variations, invariant features are used. Large-scale experiments show that the proposed road geometry classifier yields a high recognition rate of 73.57% ± 13.1, clearly outperforming other state-of-the-art methods. Including road shape information improves road detection results over existing appearance-based methods. Finally, it is shown that invariant features and temporal information provide robustness against disturbing imaging conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS;ISE Approved no
Call Number Admin @ si @ AGD2013;; ADAS @ adas @ Serial 2269
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa
Title Speed and Texture: An Empirical Study on Optical-Flow Accuracy in ADAS Scenarios Type Journal Article
Year 2014 Publication (up) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 15 Issue 1 Pages 136-147
Keywords
Abstract IF: 3.064
Increasing mobility in everyday life has led to the concern for the safety of automotives and human life. Computer vision has become a valuable tool for developing driver assistance applications that target such a concern. Many such vision-based assisting systems rely on motion estimation, where optical flow has shown its potential. A variational formulation of optical flow that achieves a dense flow field involves a data term and regularization terms. Depending on the image sequence, the regularization has to appropriately be weighted for better accuracy of the flow field. Because a vehicle can be driven in different kinds of environments, roads, and speeds, optical-flow estimation has to be accurately computed in all such scenarios. In this paper, we first present the polar representation of optical flow, which is quite suitable for driving scenarios due to the possibility that it offers to independently update regularization factors in different directional components. Then, we study the influence of vehicle speed and scene texture on optical-flow accuracy. Furthermore, we analyze the relationships of these specific characteristics on a driving scenario (vehicle speed and road texture) with the regularization weights in optical flow for better accuracy. As required by the work in this paper, we have generated several synthetic sequences along with ground-truth flow fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.076 Approved no
Call Number Admin @ si @ OnS2014a Serial 2386
Permanent link to this record